了解 RAG 第二部分:经典 RAG 的工作原理
在本系列的第一篇文章中,我们介绍了检索增强生成 (RAG) ,解释了扩展传统大型语言模型 (LLM)功能的必要性。我们还简要概述了 RAG 的核心思想:从外部知识库检索上下文相关的信息,以确保 LLM 生成准确且最新的信息,而不会产生幻觉,也不需要不断地重新训练模型。
本系列的第二篇文章揭秘了传统 RAG 系统运行的机制。尽管如今随着人工智能的迅猛发展,许多增强版和更复杂的 RAG 版本几乎每天都在不断涌现,但要了解最新的先进 RAG 方法,第一步是先理解经典的 RAG 工作流程。
经典 RAG 工作流程
典型的 RAG 系统(如下图所示)处理三个关键的数据相关组件:
-
LLM从训练数据中获取知识,通常是数百万到数十亿的文本文档 。
-
向量数据库,也称为知识库,用于存储文本文档。但为什么叫向量数据库呢?在 RAG 和整个自然语言处理 (NLP) 系统中,文本信息被转换为称为向量的数字表示,以捕获文本的语义。向量表示单词、句子或整个文档,保留原始文本的关键属性,以便两个相似的向量与具有相似语义的单词、句子或文本片段相关联。将文本存储为数字向量可提高系统的效率,从而快速找到和检索相关文档。
-
用户以自然语言提出的查询或提示。
简而言之,当用户用自然语言向配备 RAG 引擎的 LLM 助手提出问题时,在发送问题和接收答案之间会发生三个阶段:
-
检索:称为检索器的组件访问向量数据库来查找和检索与用户查询相关的文档。
-
增强:通过整合从检索到的文档中的上下文知识来增强原始用户查询。
-
生成:LLM(从 RAG 角度也通常称为生成器)接收添加了相关上下文信息的用户查询,并生成更精确、更真实的文本响应。
检索器Retriever内部
检索器是 RAG 系统中的组件,用于查找相关信息以增强 LLM 稍后生成的最终输出。您可以将其想象成一个增强型搜索引擎,它不仅将用户查询中的关键字与存储的文档进行匹配,而且还能理解查询背后的含义。
检索器会扫描与查询相关的大量领域知识(以矢量格式(文本的数字表示)存储),并提取最相关的文本片段,以围绕它们构建与原始用户查询相关的上下文。识别相关知识的一种常用技术是相似性搜索,其中将用户查询编码为矢量表示,然后将该矢量与存储的矢量数据进行比较。这样,检测与用户查询最相关的知识片段,归结为迭代执行一些数学计算,以识别与该查询的矢量表示最接近(最相似)的矢量。因此,检索器不仅能够高效而且准确地提取准确的、上下文感知的信息。
生成器Generator内部
RAG 中的生成器通常是一种复杂的语言模型,通常是基于转换器transformer架构的 LLM ,它从检索器获取增强的输入并产生准确、上下文感知且通常真实的响应。通过结合相关的外部信息,此结果通常超越独立 LLM 的质量。
在模型内部,生成过程涉及理解和生成文本,由对增强输入进行编码并逐字生成输出文本的组件管理。每个单词都是根据前面的单词进行预测的:这项任务是 LLM 内部的最后一个阶段,称为下一个单词预测问题:预测最有可能的下一个单词,以保持所生成消息的连贯性和相关性。
展望未来
在本系列关于理解 RAG 的下一篇文章中,我们将揭示RAG 的融合方法,其特点是使用专门的方法组合来自多个检索到的文档的信息,从而增强生成响应的上下文。
RAG 中融合方法的一个常见示例是重新排序,它涉及根据用户相关性对多个检索到的文档进行评分和优先排序,然后将最相关的文档传递给生成器。这有助于进一步提高增强上下文的质量以及语言模型最终生成的响应。
相关文章:

了解 RAG 第二部分:经典 RAG 的工作原理
在本系列的第一篇文章中,我们介绍了检索增强生成 (RAG) ,解释了扩展传统大型语言模型 (LLM)功能的必要性。我们还简要概述了 RAG 的核心思想:从外部知识库检索上下文相关的信息,以确保 LLM 生成准确且最新的信息,而不会…...
50周学习go语言:第四周 函数与错误处理深度解析
第四周 函数与错误处理深度解析 以下是第4周函数基础的深度教程,包含两个完整案例和详细实现细节: 第四周:函数与错误处理深度解析 一、函数定义与参数传递 1. 基础函数结构 // 基本语法 func 函数名(参数列表) 返回值类型 {// 函数体 }// …...
debian 12安装 postgresql 17
按照官方文档安装,即可安装成功 https://www.postgresql.org/download/linux/debian/ 添加存储库 #添加存储库 sudo apt install -y postgresql-common#执行 存储库内 命令,自动处理某些东西 sudo /usr/share/postgresql-common/pgdg/apt.postgresql.o…...
C++....................4
1. using namespace std; class mystring { private:char* p;int len;// 辅助函数:复制字符串void copy(const char* source) {len strlen(source);p new char[len 1];strcpy(p, source);}// 辅助函数:释放内存void release() {if (…...
图书馆系统源码详解
本项目是一个基于Scala语言开发的图书馆管理系统。系统主要由以下几个部分组成:数据访问层(DAO)、数据模型层(Models)、服务层(Service)以及用户界面层(UI)。以下是对项目…...
Node.js中如何修改全局变量的几种方式
Node.js中如何修改全局变量。我需要先理解他们的需求。可能他们是在开发过程中遇到了需要跨模块共享数据的情况,或者想要配置一些全局可访问的设置。不过,使用全局变量可能存在一些问题,比如命名冲突、难以维护和测试困难,所以我得…...

基于javaweb的SpringBoot个人博客系统设计和实现(源码+文档+部署讲解)
技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论…...

厦大团队:DeepSeek大模型概念、技术与应用实践 140页PDF完整版下载
DeepSeek使用教程系列: 厦门大学: DeepSeek大模型概念、技术与应用实践 140页PDF完整版文件 厦大团队:DeepSeek大模型概念、技术与应用实践(140页PPT读懂大模型).pdf https://pan.baidu.com/s/1de4UIxqPsvMBIYcpen_M-…...

【Blender】二、建模篇--05,阵列修改器与晶格形变
阵列修改器是bender里面一个比较常用的修改器,所以我们单独开口来讲,我们会先从几片树叶出发,然后我们用阵列修改器把这几片树叶变成这样的造型和这样的造型。这两个造型分别就代表着阵列修改器最常用的两种偏移方法,我们现在就开始我们先来做几个树叶。 1.树叶建模 首先…...

#渗透测试#批量漏洞挖掘#畅捷通T+远程命令执行漏洞
免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 一、漏洞概况 二、攻击特征 三、应急处置…...
【Python爬虫(23)】探秘Python爬虫数据存储:MongoDB实战指南
【Python爬虫】专栏简介:本专栏是 Python 爬虫领域的集大成之作,共 100 章节。从 Python 基础语法、爬虫入门知识讲起,深入探讨反爬虫、多线程、分布式等进阶技术。以大量实例为支撑,覆盖网页、图片、音频等各类数据爬取ÿ…...
Pytorch使用手册-音频数据增强(专题二十)
音频数据增强 torchaudio 提供了多种方式来增强音频数据。 在本教程中,我们将介绍一种应用效果、滤波器、RIR(房间脉冲响应)和编解码器的方法。 最后,我们将从干净的语音合成带噪声的电话语音。 import torch import torchaudio import torchaudio.functional as Fprin…...
Linux 命令大全完整版(04)
1. 用户信息相关命令 who 功能说明:显示目前登入系统的用户信息。语 法:who [-Himqsw][--help][--version][am i][记录文件]补充说明:执行这项指令可得知目前有哪些用户登入系统,单独执行 who 指令会列出登入帐号、使用的终端…...
嵌入式Linux内核底层调试技术Kprobes
大家好,我是bug菌~ Kprobes 是 Linux 内核中一种动态插桩(Dynamic Instrumentation)技术,允许在不修改内核源码或重启系统的前提下,动态监控内核函数的执行。它是内核调试、性能分析和安全监控的重要工具。以下从技术…...

leetcode 119. 杨辉三角 II
给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1]示例 2: 输入: rowIndex 0 输出: [1]示例 3: 输入: rowIndex 1 输出: [1,1]提示…...

内网网络安全的解决之道
本文简要分析了企业内部网络所面临的主要分析,阐述了安全管理人员针对不同威胁的主要技术应对措施。进一步介绍了业界各种技术措施的现状,并提出了未来可能的发展趋势。 内网网络安全问题的提出 网络安全对于绝大多数人而言指的都是互联网安全ÿ…...
分布式光纤声波振动技术在钻井泄漏检测中的应用
在石油天然气的钻井作业中,及时发现并定位泄漏点对于保障开采安全、降低环境污染以及避免经济损失至关重要。传统的泄漏检测方法往往存在局限性,而分布式光纤声波振动技术凭借其独特的优势,正逐渐成为钻井过程中寻找泄漏的有力工具。 技术原理…...

deepseek 导出导入模型(Windows)
前言 实现导出导入deepseek 模型。deepseek 安装Windows下参考 Windows 导出模型 Restart-Service 重启服务参考Stop-Service 关闭服务参考Start-Service 确定服务参考Compress-Archive 压缩参考Expand-Archive 解压参考setx 环境变量参考C:\Users\用户名\.ollama\models 默…...
Spring MVC配置文件
1. DispatcherServlet配置 作用:DispatcherServlet是Spring MVC的核心前端控制器,用于接收所有HTTP请求,并将请求分发给对应的处理器(Controller)。 配置方式: 在web.xml中配置DispatcherServletÿ…...

计算机视觉:主流数据集整理
第一章:计算机视觉中图像的基础认知 第二章:计算机视觉:卷积神经网络(CNN)基本概念(一) 第三章:计算机视觉:卷积神经网络(CNN)基本概念(二) 第四章:搭建一个经典的LeNet5神经网络(附代码) 第五章࿱…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...
前端调试HTTP状态码
1xx(信息类状态码) 这类状态码表示临时响应,需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分,客户端应继续发送剩余部分。 2xx(成功类状态码) 表示请求已成功被服务器接收、理解并处…...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...