当前位置: 首页 > news >正文

Modelfile配置说明

参数说明翻译

参数描述值类型示例用法
mirostat启用Mirostat采样以控制困惑度。(默认:0,0=禁用,1=Mirostat,2=Mirostat 2.0)intmirostat 0
mirostat_eta影响算法对生成文本反馈的响应速度。较低的学习率将导致调整较慢,而较高的学习率将使算法更敏感。(默认:0.1)floatmirostat_eta 0.1
mirostat_tau控制输出的一致性和多样性之间的平衡。较低的值将导致更集中和一致的文本。(默认:5.0)floatmirostat_tau 5.0
num_ctx设置用于生成下一个标记的上下文窗口的大小。(默认:2048)intnum_ctx 4096
repeat_last_n设置模型回溯以防止重复的距离。(默认:64,0=禁用,-1=num_ctx)intrepeat_last_n 64
repeat_penalty设置对重复的惩罚强度。较高的值(例如,1.5)将对重复进行更强烈的惩罚,而较低的值(例如,0.9)将更加宽松。(默认:1.1)floatrepeat_penalty 1.1
temperature模型的温度。增加温度将使模型更具创造性地回答。(默认:0.8)floattemperature 0.7
seed设置生成时使用的随机数种子。将此设置为特定数字将使模型对相同的提示生成相同的文本。(默认:0)intseed 42
stop设置要使用的停止序列。当遇到此模式时,LLM将停止生成文本并返回。可以通过在模型文件中指定多个单独的stop参数来设置多个停止模式。stringstop “AI assistant:”
tfs_z尾部自由采样用于减少输出中不太可能的标记的影响。较高的值(例如,2.0)将更多地减少影响,而值为1.0则禁用此设置。(默认:1)floattfs_z 1
num_predict生成文本时预测的最大标记数。(默认:128,-1=无限生成,-2=填充上下文)intnum_predict 42
top_k减少生成无意义内容的概率。较高的值(例如,100)将给出更多样化的答案,而较低的值(例如,10)将更加保守。(默认:40)inttop_k 40
top_p与top-k配合使用。较高的值(例如,0.95)将导致更多样化的文本,而较低的值(例如,0.5)将生成更集中和保守的文本。(默认:0.9)floattop_p 0.9
min_ptop_p的替代方案,旨在确保质量和多样性的平衡。参数p表示考虑标记的最小概率,相对于最可能标记的概率。例如,当p=0.05且最可能的标记概率为0.9时,过滤掉值小于0.045的逻辑。(默认:0.0)floatmin_p 0.05

如何让Ollama中的DeepSeek运行最快

要让Ollama中的DeepSeek运行最快,可以从以下几个方面进行优化:

  1. 硬件资源优化

    • GPU加速:确保已经安装并配置好支持GPU加速的Python环境。对于DeepSeek模型而言,在启动命令中指定更多的计算资源(如多个GPU设备)能够显著加速推理过程。例如,通过设置环境变量CUDA_VISIBLE_DEVICES来启用多个GPU设备参与运算。
    • CPU与GPU分配:合理调整GPU和CPU的分配比例,以充分利用硬件资源。在某些情况下,增加CPU的使用可以减少GPU的负担,从而提高整体性能。
  2. 模型加载与配置优化

    • 模型层数调整:根据本地硬件条件,调整模型加载的层数。在显存有限的情况下,适当减少模型层数可以避免内存溢出(OOM)错误,同时提高运行速度。
    • 参数调整:通过调整num_gpunum_ctx等参数来优化模型性能。例如,增加num_ctx的值可以扩大上下文窗口的大小,从而提高模型的生成能力;而调整num_gpu的值可以优化模型在GPU上的加载和运行效率。
  3. 数据管道优化

    • 批量加载:采用批量加载方式提交待预测样本给模型,可以减少每次调用间的开销时间。
    • 数据预处理:提前完成必要的转换操作,如文本清洗、分词等,以减少模型处理数据的负担。
  4. 使用优化工具与框架

    • IPEX-LLM:对于使用Intel GPU的用户,可以考虑使用IPEX-LLM框架来加速模型推理。IPEX-LLM是英特尔团队开发的一个本地大语言模型推理加速框架,支持大多数主流AI大模型。
    • 自动化混合精度:引入FP16半精度浮点数代替传统FP32,可以有效降低内存占用量以及缩短前向传播所需周期数目。现代框架如TensorFlow或PyTorch都支持自动混合同步机制实现这一点。
  5. 监控与调优

    • 性能监控:定期收集有关查询延迟率、吞吐量等方面的关键绩效指数(KPI),并与未采用任何优化手段前后的历史记录做对比分析,以评估当前策略的有效性和合理性。
    • 持续调优:根据性能监控结果,不断调整和优化模型参数和配置,以达到最佳性能。

通过以上方法的综合运用,可以有效提高Ollama中DeepSeek模型的运行速度。

相关文章:

Modelfile配置说明

参数说明翻译 参数描述值类型示例用法mirostat启用Mirostat采样以控制困惑度。(默认:0,0禁用,1Mirostat,2Mirostat 2.0)intmirostat 0mirostat_eta影响算法对生成文本反馈的响应速度。较低的学习率将导致调…...

labview实现有符号位16进制转二进制补码转真值

今天在用一个采集模块时,发现读出寄存器的数据是不同的,它有两种范围,一个时十六进制整型,一种是有符号位十六进制,对应的量程和范围也是不同的,针对之前读取温度没有出现负数的情况,应该是转成…...

浏览器深度解析:打造极速、安全、个性化的上网新体验

在数字化时代,浏览器作为我们获取信息、娱乐休闲的重要工具,其性能与功能直接影响着我们的上网体验。今天,我将为大家介绍一款备受好评的浏览器——Yandex浏览器,并深入解析其独特功能与优势,帮助大家更好地了解并选择这款上网神器。 一、知名公司背书,开源项目融合 Yan…...

JavaScript 简单类型与复杂类型-堆和栈

深入理解JavaScript中的简单类型(基本数据类型)与复杂类型(引用数据类型)如何在内存中存储对于编写高效、无误的代码至关重要。本文将探讨这两种类型的差异,以及它们在内存中的存储机制——栈(Stack&#x…...

【AI+智造】DeepSeek价值重构:当采购与物控遇上数字化转型的化学反应

作者:Odoo技术开发/资深信息化负责人 日期:2025年2月24日 引言:从事企业信息化工作16年,我见证过无数企业从手工台账到ERP系统的跨越。但真正让采购和物控部门脱胎换骨的,是融合了Deepseek AI的Odoo数字化解决方案——…...

基于YOLO11深度学习的苹果叶片病害检测识别系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...

mapbox添加自定义图片绑定点击事件,弹窗为自定义组件

一、首先构建根据后端返回的数据构建geojson格式的数据,点位的geojson数据格式: {"type": "FeatureCollection","features": [{"type": "Feature","geometry": {"type": "…...

SVT-AV1接入ffmpeg说明

一 编译集成 Files v2.3.0 Alliance for Open Media / SVT-AV1 GitLab cd /SVT-AV1/Build/linux/ ./build.sh make install GitHub - FFmpeg/FFmpeg: Mirror of https://git.ffmpeg.org/ffmpeg.git ./configure --enable-libsvtav1 --enable-gpl --extra-ldflags-L/usr/loca…...

基于 C++ Qt 的 Fluent Design 组件库 QFluentWidgets

简介 QFluentWidgets 是一个基于 Qt 的 Fluent Designer 组件库,内置超过 150 个开箱即用的 Fluent Designer 组件,支持亮暗主题无缝切换和自定义主题色。 编译示例 以 Qt5 为例(Qt6 也支持),将 libQFluentWidgets.d…...

OpenCV(6):图像边缘检测

图像边缘检测是计算机视觉和图像处理中的一项基本任务,它用于识别图像中亮度变化明显的区域,这些区域通常对应于物体的边界。是 OpenCV 中常用的边缘检测函数及其说明: 函数算法说明适用场景cv2.Canny()Canny 边缘检测多阶段算法,检测效果较…...

多模态人物视频驱动技术回顾与业务应用

一种新的商品表现形态,内容几乎存在于手淘用户动线全流程,例如信息流种草内容、搜索消费决策内容、详情页种草内容等。通过低成本、高时效的AIGC内容生成能力,能够从供给端缓解内容生产成本高的问题,通过源源不断的低成本供给倒推…...

星海智算+ DeepSeek-R1:技术突破与行业应用的协同革新

一、前言 在当今数字化时代,人工智能(AI)正以前所未有的速度改变着商业和社会的方方面面。最近爆火的DeepSeek-R1系列模型,以其强大的推理能力和在中文的推理、代码和数学任务高效的性能得到了全球用户的热议。该模型不仅在多项专…...

选择排序:简单高效的选择

大家好,今天我们来聊聊选择排序(Selection Sort)算法。这是一个非常简单的排序算法,适合用来学习排序的基本思路和操作。选择排序在许多排序算法中以其直观和易于实现的特点著称,虽然它的效率不如其他高效算法&#xf…...

考研/保研复试英语问答题库(华工建院)

华南理工大学建筑学院保研/考研 英语复试题库,由华工保研er和学硕笔试第一同学一起整理,覆盖面广,助力考研/保研上岸!需要👇载可到文章末尾见小🍠。 以下是主要内容: Part0 复试英语的方法论 Pa…...

ARM Cortex-M处理器中的MSP和PSP

在ARM Cortex-M系列处理器中,MSP(主堆栈指针)和PSP(进程堆栈指针)是两种不同的堆栈指针,主要用于实现堆栈隔离和提升系统可靠性。以下是它们的核心区别和应用场景: 1. 基本定义 MSP(…...

《Keras 3 使用 NeRF 进行 3D 体积渲染》:此文为AI自动翻译

《Keras 3 使用 NeRF 进行 3D 体积渲染》 作者: Aritra Roy Gosthipaty, Ritwik Raha 创建日期: 2021/08/09 最后修改时间: 2023/11/13 描述: 体积渲染的最小实现,如 NeRF 中所示。 (i) 此示例使用 Keras 3 在 Colab 中查看 GitHub 源 介绍 在此示例中,我们展示了…...

Pytorch实现之浑浊水下图像增强

简介 简介:这也是一篇非常适合GAN小白们上手的架构文章!提出了一种基于GAN的水下图像增强网络。这种网络与其他架构类似,生成器是卷积+激活函数+归一化+残差结构的组成,鉴别器是卷积+激活函数+归一化以及全连接层。损失函数是常用的均方误差、感知损失和对抗损失三部分。 …...

【redis】数据类型之Bitfields

Redis的Bitfields(位域)与Bitmaps一样,在Redis中并不是一种独立的数据类型,而是一种基于字符串的数据结构,用于处理位级别的操作。允许用户将一个Redis字符串视作由一系列二进制位组成的数组,并对这些位进行…...

Python入门 — 类

面向对象编程中,编写表示现实世界中的事物和情景的类(class),并基于这些类来创建对象(object)。根据类来创建对象称为实例化,这样就可以使用类的实例(instance) 一、创建…...

R-INLA实现绿地与狐狸寄生虫数据空间建模:含BYM、SPDE模型及PC先验应用可视化...

全文链接:https://tecdat.cn/?p40720 本论文旨在为对空间建模感兴趣的研究人员客户提供使用R-INLA进行空间数据建模的基础教程。通过对区域数据和地统计(标记点)数据的分析,介绍了如何拟合简单模型、构建和运行更复杂的空间模型&…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

Xcode 16 集成 cocoapods 报错

基于 Xcode 16 新建工程项目,集成 cocoapods 执行 pod init 报错 ### Error RuntimeError - PBXGroup attempted to initialize an object with unknown ISA PBXFileSystemSynchronizedRootGroup from attributes: {"isa">"PBXFileSystemSynchro…...