当前位置: 首页 > news >正文

Modelfile配置说明

参数说明翻译

参数描述值类型示例用法
mirostat启用Mirostat采样以控制困惑度。(默认:0,0=禁用,1=Mirostat,2=Mirostat 2.0)intmirostat 0
mirostat_eta影响算法对生成文本反馈的响应速度。较低的学习率将导致调整较慢,而较高的学习率将使算法更敏感。(默认:0.1)floatmirostat_eta 0.1
mirostat_tau控制输出的一致性和多样性之间的平衡。较低的值将导致更集中和一致的文本。(默认:5.0)floatmirostat_tau 5.0
num_ctx设置用于生成下一个标记的上下文窗口的大小。(默认:2048)intnum_ctx 4096
repeat_last_n设置模型回溯以防止重复的距离。(默认:64,0=禁用,-1=num_ctx)intrepeat_last_n 64
repeat_penalty设置对重复的惩罚强度。较高的值(例如,1.5)将对重复进行更强烈的惩罚,而较低的值(例如,0.9)将更加宽松。(默认:1.1)floatrepeat_penalty 1.1
temperature模型的温度。增加温度将使模型更具创造性地回答。(默认:0.8)floattemperature 0.7
seed设置生成时使用的随机数种子。将此设置为特定数字将使模型对相同的提示生成相同的文本。(默认:0)intseed 42
stop设置要使用的停止序列。当遇到此模式时,LLM将停止生成文本并返回。可以通过在模型文件中指定多个单独的stop参数来设置多个停止模式。stringstop “AI assistant:”
tfs_z尾部自由采样用于减少输出中不太可能的标记的影响。较高的值(例如,2.0)将更多地减少影响,而值为1.0则禁用此设置。(默认:1)floattfs_z 1
num_predict生成文本时预测的最大标记数。(默认:128,-1=无限生成,-2=填充上下文)intnum_predict 42
top_k减少生成无意义内容的概率。较高的值(例如,100)将给出更多样化的答案,而较低的值(例如,10)将更加保守。(默认:40)inttop_k 40
top_p与top-k配合使用。较高的值(例如,0.95)将导致更多样化的文本,而较低的值(例如,0.5)将生成更集中和保守的文本。(默认:0.9)floattop_p 0.9
min_ptop_p的替代方案,旨在确保质量和多样性的平衡。参数p表示考虑标记的最小概率,相对于最可能标记的概率。例如,当p=0.05且最可能的标记概率为0.9时,过滤掉值小于0.045的逻辑。(默认:0.0)floatmin_p 0.05

如何让Ollama中的DeepSeek运行最快

要让Ollama中的DeepSeek运行最快,可以从以下几个方面进行优化:

  1. 硬件资源优化

    • GPU加速:确保已经安装并配置好支持GPU加速的Python环境。对于DeepSeek模型而言,在启动命令中指定更多的计算资源(如多个GPU设备)能够显著加速推理过程。例如,通过设置环境变量CUDA_VISIBLE_DEVICES来启用多个GPU设备参与运算。
    • CPU与GPU分配:合理调整GPU和CPU的分配比例,以充分利用硬件资源。在某些情况下,增加CPU的使用可以减少GPU的负担,从而提高整体性能。
  2. 模型加载与配置优化

    • 模型层数调整:根据本地硬件条件,调整模型加载的层数。在显存有限的情况下,适当减少模型层数可以避免内存溢出(OOM)错误,同时提高运行速度。
    • 参数调整:通过调整num_gpunum_ctx等参数来优化模型性能。例如,增加num_ctx的值可以扩大上下文窗口的大小,从而提高模型的生成能力;而调整num_gpu的值可以优化模型在GPU上的加载和运行效率。
  3. 数据管道优化

    • 批量加载:采用批量加载方式提交待预测样本给模型,可以减少每次调用间的开销时间。
    • 数据预处理:提前完成必要的转换操作,如文本清洗、分词等,以减少模型处理数据的负担。
  4. 使用优化工具与框架

    • IPEX-LLM:对于使用Intel GPU的用户,可以考虑使用IPEX-LLM框架来加速模型推理。IPEX-LLM是英特尔团队开发的一个本地大语言模型推理加速框架,支持大多数主流AI大模型。
    • 自动化混合精度:引入FP16半精度浮点数代替传统FP32,可以有效降低内存占用量以及缩短前向传播所需周期数目。现代框架如TensorFlow或PyTorch都支持自动混合同步机制实现这一点。
  5. 监控与调优

    • 性能监控:定期收集有关查询延迟率、吞吐量等方面的关键绩效指数(KPI),并与未采用任何优化手段前后的历史记录做对比分析,以评估当前策略的有效性和合理性。
    • 持续调优:根据性能监控结果,不断调整和优化模型参数和配置,以达到最佳性能。

通过以上方法的综合运用,可以有效提高Ollama中DeepSeek模型的运行速度。

相关文章:

Modelfile配置说明

参数说明翻译 参数描述值类型示例用法mirostat启用Mirostat采样以控制困惑度。(默认:0,0禁用,1Mirostat,2Mirostat 2.0)intmirostat 0mirostat_eta影响算法对生成文本反馈的响应速度。较低的学习率将导致调…...

labview实现有符号位16进制转二进制补码转真值

今天在用一个采集模块时,发现读出寄存器的数据是不同的,它有两种范围,一个时十六进制整型,一种是有符号位十六进制,对应的量程和范围也是不同的,针对之前读取温度没有出现负数的情况,应该是转成…...

浏览器深度解析:打造极速、安全、个性化的上网新体验

在数字化时代,浏览器作为我们获取信息、娱乐休闲的重要工具,其性能与功能直接影响着我们的上网体验。今天,我将为大家介绍一款备受好评的浏览器——Yandex浏览器,并深入解析其独特功能与优势,帮助大家更好地了解并选择这款上网神器。 一、知名公司背书,开源项目融合 Yan…...

JavaScript 简单类型与复杂类型-堆和栈

深入理解JavaScript中的简单类型(基本数据类型)与复杂类型(引用数据类型)如何在内存中存储对于编写高效、无误的代码至关重要。本文将探讨这两种类型的差异,以及它们在内存中的存储机制——栈(Stack&#x…...

【AI+智造】DeepSeek价值重构:当采购与物控遇上数字化转型的化学反应

作者:Odoo技术开发/资深信息化负责人 日期:2025年2月24日 引言:从事企业信息化工作16年,我见证过无数企业从手工台账到ERP系统的跨越。但真正让采购和物控部门脱胎换骨的,是融合了Deepseek AI的Odoo数字化解决方案——…...

基于YOLO11深度学习的苹果叶片病害检测识别系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...

mapbox添加自定义图片绑定点击事件,弹窗为自定义组件

一、首先构建根据后端返回的数据构建geojson格式的数据,点位的geojson数据格式: {"type": "FeatureCollection","features": [{"type": "Feature","geometry": {"type": "…...

SVT-AV1接入ffmpeg说明

一 编译集成 Files v2.3.0 Alliance for Open Media / SVT-AV1 GitLab cd /SVT-AV1/Build/linux/ ./build.sh make install GitHub - FFmpeg/FFmpeg: Mirror of https://git.ffmpeg.org/ffmpeg.git ./configure --enable-libsvtav1 --enable-gpl --extra-ldflags-L/usr/loca…...

基于 C++ Qt 的 Fluent Design 组件库 QFluentWidgets

简介 QFluentWidgets 是一个基于 Qt 的 Fluent Designer 组件库,内置超过 150 个开箱即用的 Fluent Designer 组件,支持亮暗主题无缝切换和自定义主题色。 编译示例 以 Qt5 为例(Qt6 也支持),将 libQFluentWidgets.d…...

OpenCV(6):图像边缘检测

图像边缘检测是计算机视觉和图像处理中的一项基本任务,它用于识别图像中亮度变化明显的区域,这些区域通常对应于物体的边界。是 OpenCV 中常用的边缘检测函数及其说明: 函数算法说明适用场景cv2.Canny()Canny 边缘检测多阶段算法,检测效果较…...

多模态人物视频驱动技术回顾与业务应用

一种新的商品表现形态,内容几乎存在于手淘用户动线全流程,例如信息流种草内容、搜索消费决策内容、详情页种草内容等。通过低成本、高时效的AIGC内容生成能力,能够从供给端缓解内容生产成本高的问题,通过源源不断的低成本供给倒推…...

星海智算+ DeepSeek-R1:技术突破与行业应用的协同革新

一、前言 在当今数字化时代,人工智能(AI)正以前所未有的速度改变着商业和社会的方方面面。最近爆火的DeepSeek-R1系列模型,以其强大的推理能力和在中文的推理、代码和数学任务高效的性能得到了全球用户的热议。该模型不仅在多项专…...

选择排序:简单高效的选择

大家好,今天我们来聊聊选择排序(Selection Sort)算法。这是一个非常简单的排序算法,适合用来学习排序的基本思路和操作。选择排序在许多排序算法中以其直观和易于实现的特点著称,虽然它的效率不如其他高效算法&#xf…...

考研/保研复试英语问答题库(华工建院)

华南理工大学建筑学院保研/考研 英语复试题库,由华工保研er和学硕笔试第一同学一起整理,覆盖面广,助力考研/保研上岸!需要👇载可到文章末尾见小🍠。 以下是主要内容: Part0 复试英语的方法论 Pa…...

ARM Cortex-M处理器中的MSP和PSP

在ARM Cortex-M系列处理器中,MSP(主堆栈指针)和PSP(进程堆栈指针)是两种不同的堆栈指针,主要用于实现堆栈隔离和提升系统可靠性。以下是它们的核心区别和应用场景: 1. 基本定义 MSP(…...

《Keras 3 使用 NeRF 进行 3D 体积渲染》:此文为AI自动翻译

《Keras 3 使用 NeRF 进行 3D 体积渲染》 作者: Aritra Roy Gosthipaty, Ritwik Raha 创建日期: 2021/08/09 最后修改时间: 2023/11/13 描述: 体积渲染的最小实现,如 NeRF 中所示。 (i) 此示例使用 Keras 3 在 Colab 中查看 GitHub 源 介绍 在此示例中,我们展示了…...

Pytorch实现之浑浊水下图像增强

简介 简介:这也是一篇非常适合GAN小白们上手的架构文章!提出了一种基于GAN的水下图像增强网络。这种网络与其他架构类似,生成器是卷积+激活函数+归一化+残差结构的组成,鉴别器是卷积+激活函数+归一化以及全连接层。损失函数是常用的均方误差、感知损失和对抗损失三部分。 …...

【redis】数据类型之Bitfields

Redis的Bitfields(位域)与Bitmaps一样,在Redis中并不是一种独立的数据类型,而是一种基于字符串的数据结构,用于处理位级别的操作。允许用户将一个Redis字符串视作由一系列二进制位组成的数组,并对这些位进行…...

Python入门 — 类

面向对象编程中,编写表示现实世界中的事物和情景的类(class),并基于这些类来创建对象(object)。根据类来创建对象称为实例化,这样就可以使用类的实例(instance) 一、创建…...

R-INLA实现绿地与狐狸寄生虫数据空间建模:含BYM、SPDE模型及PC先验应用可视化...

全文链接:https://tecdat.cn/?p40720 本论文旨在为对空间建模感兴趣的研究人员客户提供使用R-INLA进行空间数据建模的基础教程。通过对区域数据和地统计(标记点)数据的分析,介绍了如何拟合简单模型、构建和运行更复杂的空间模型&…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

无法与IP建立连接,未能下载VSCode服务器

如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

2021-03-15 iview一些问题

1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...

生成 Git SSH 证书

🔑 1. ​​生成 SSH 密钥对​​ 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​: -t rsa&#x…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...