当前位置: 首页 > news >正文

机器学习数学基础:32.斯皮尔曼等级相关

斯皮尔曼等级相关教程

一、定义与原理

斯皮尔曼等级相关系数(Spearman’s rank - correlation coefficient),常用 ρ \rho ρ表示,是一种非参数统计量,用于衡量两个变量的等级之间的关联程度。它基于变量的秩次(排序后的位置)进行计算,不依赖于数据的分布形态,能有效处理非线性关系和非数值型的有序数据。取值范围在 − 1 -1 1 1 1 1之间, ρ = 1 \rho \ = 1 ρ =1表示完全正相关,即一个变量的等级增加时,另一个变量的等级也严格增加; ρ = − 1 \rho \ = - 1 ρ =1表示完全负相关; ρ = 0 \rho \ = 0 ρ =0表示不存在等级相关关系。

二、适用场景

  • 数据为定序数据:如比赛名次、成绩等级、满意度排序等,例如分析不同餐厅在美食评选中的排名和顾客推荐率排名的关系。
  • 数据分布未知或不满足正态分布:当无法确定数据是否服从正态分布,或者明确知道数据不服从正态分布时,斯皮尔曼等级相关系数是很好的选择。
  • 变量间为非线性关系:只要两个变量之间存在单调变化趋势(不一定是线性),都可以用它来衡量相关性,比如植物生长时间和植株高度的关系(可能是先慢后快再趋于平稳的非线性增长) 。

三、计算步骤

斯皮尔曼等级相关系数计算

  1. 数据排序:分别对两个变量的数据进行排序,确定每个数据在各自变量中的等级。若存在相同数值,通常取平均等级。例如,有三个数据 3 3 3 3 3 3 5 5 5,它们的等级分别为 1.5 1.5 1.5 ( 1 + 2 ) ÷ 2 (1 + 2)\div2 (1+2)÷2), 1.5 1.5 1.5 3 3 3
  2. 计算等级差:对于每一对数据,计算它们的等级差 d i d_{i} di
  3. 计算等级差的平方:得到 d i 2 d_{i}^{2} di2,并对所有的 d i 2 d_{i}^{2} di2求和,得到 ∑ d i 2 \sum d_{i}^{2} di2
  4. 计算相关系数:根据公式 ρ = 1 − 6 ∑ d i 2 n 3 − n \rho \ = 1-\frac{6\sum d_{i}^{2}}{n^{3}-n} ρ =1n3n6di2 n n n为样本数量)计算斯皮尔曼等级相关系数。

t检验步骤

  1. 建立假设
    • 原假设 H 0 H_0 H0:总体的斯皮尔曼等级相关系数 ρ = 0 \rho \ = 0 ρ =0,即总体中两个变量之间不存在等级相关关系。
    • 备择假设 H 1 H_1 H1:总体的斯皮尔曼等级相关系数 ρ ≠ 0 \rho\neq 0 ρ=0,即总体中两个变量之间存在等级相关关系。
  2. 计算t统计量:在斯皮尔曼等级相关的t检验中,可使用公式 t = r R n − 2 1 − r R 2 t\ =\frac{r_{R}\sqrt{n - 2}}{\sqrt{1 - r_{R}^{2}}} t =1rR2 rRn2 (这里 r R r_{R} rR表示计算得到的斯皮尔曼等级相关系数, n n n为样本数量)。此公式与积差相关系数(如Pearson相关系数)检验中t统计量的计算形式相同,这样做是因为在一定条件下,基于等级数据计算出的相关系数的抽样分布近似于t分布。
  3. 确定临界值:根据给定的显著性水平 α \alpha α(常用的有 0.05 0.05 0.05 0.01 0.01 0.01等)和自由度 d f = n − 2 df \ = n - 2 df =n2,查阅 t t t分布表得到临界值 t α / 2 ( n − 2 ) t_{\alpha/2}(n - 2) tα/2(n2)
  4. 做出决策
    • 如果 ∣ t ∣ > t α / 2 ( n − 2 ) \vert t\vert>t_{\alpha/2}(n - 2) t>tα/2(n2),则拒绝原假设 H 0 H_0 H0,认为总体中两个变量之间存在等级相关关系。
    • 如果 ∣ t ∣ ≤ t α / 2 ( n − 2 ) \vert t\vert\leq t_{\alpha/2}(n - 2) ttα/2(n2),则不能拒绝原假设 H 0 H_0 H0,即没有足够证据表明总体中两个变量之间存在等级相关关系。

四、实例演示

斯皮尔曼等级相关系数计算实例

研究 6 6 6名学生的语文成绩排名和英语成绩排名的相关性,数据如下:

学生编号语文成绩排名 X X X英语成绩排名 Y Y Y d i d_{i} di(等级差) d i 2 d_{i}^{2} di2(等级差的平方)
123-11
24224
31100
434-11
55500
66600

计算 ∑ d i 2 = 1 + 4 + 0 + 1 + 0 + 0 = 6 \sum d_{i}^{2}\ =1 + 4+0 + 1+0 + 0 \ = 6 di2 =1+4+0+1+0+0 =6 n = 6 n \ = 6 n =6
代入公式可得:
ρ = 1 − 6 × 6 6 3 − 6 = 1 − 36 216 − 6 = 1 − 36 210 ≈ 0.83 \begin{align*} \rho&\ =1-\frac{6\times6}{6^{3}-6}\\ &\ =1-\frac{36}{216 - 6}\\ &\ =1-\frac{36}{210}\\ &\approx0.83 \end{align*} ρ =16366×6 =1216636 =1210360.83
结果表明,这 6 6 6名学生的语文和英语成绩排名有较强的正相关关系。

t检验实例

针对上述例子,假设显著性水平 α = 0.05 \alpha \ = 0.05 α =0.05

  1. 已知 r R ≈ 0.83 r_{R} \approx 0.83 rR0.83 n = 6 n \ = 6 n =6,计算 t t t统计量:
    t = 0.83 6 − 2 1 − 0.8 3 2 = 0.83 × 2 1 − 0.6889 = 1.66 0.3111 ≈ 2.97 \begin{align*} t&\ =\frac{0.83\sqrt{6 - 2}}{\sqrt{1 - 0.83^{2}}}\\ &\ =\frac{0.83\times2}{\sqrt{1 - 0.6889}}\\ &\ =\frac{1.66}{\sqrt{0.3111}}\\ &\approx2.97 \end{align*} t =10.832 0.8362  =10.6889 0.83×2 =0.3111 1.662.97
  2. 自由度 d f = n − 2 = 6 − 2 = 4 df \ = n - 2 \ = 6 - 2 \ = 4 df =n2 =62 =4,查 t t t分布表得 t 0.025 ( 4 ) = 2.776 t_{0.025}(4)\ = 2.776 t0.025(4) =2.776
  3. 因为 ∣ 2.97 ∣ > 2.776 \vert 2.97\vert> 2.776 ∣2.97∣>2.776,所以拒绝原假设 H 0 H_0 H0,可以认为在总体中,学生的语文成绩排名和英语成绩排名之间存在等级相关关系。

五、注意事项

  • 只反映等级相关:它衡量的是变量等级之间的关联,并非原始数据值之间的精确关系。
  • 对单调关系敏感:只能检测单调的相关关系,若变量间关系复杂非单调,可能无法准确反映相关性。
  • 样本数量影响:样本数量过少可能导致结果不稳定,一般建议样本量 n ≥ 10 n\geq 10 n10
  • t检验前提:虽然斯皮尔曼等级相关的t检验形式与积差相关类似,但在使用时要注意其基于等级数据的特点,以及样本数据对近似t分布条件的满足程度。当样本量较小时,t检验结果的准确性可能会受到一定影响。

相关文章:

机器学习数学基础:32.斯皮尔曼等级相关

斯皮尔曼等级相关教程 一、定义与原理 斯皮尔曼等级相关系数(Spearman’s rank - correlation coefficient),常用 ρ \rho ρ表示,是一种非参数统计量,用于衡量两个变量的等级之间的关联程度。它基于变量的秩次&…...

【AI-39】深度学习框架包含哪些内容

深度学习框架(如 PyTorch、TensorFlow)是用于构建和训练神经网络的工具,它们提供了底层的计算库、优化算法、张量操作等功能。而transformers库是基于这些深度学习框架构建的高级库,它封装了许多预训练模型和相关的工具&#xff0…...

uniapp h5支付宝支付

第1种&#xff0c;创建个div插入到body中 const div document.createElement(div); div.innerHTML 后端返回的form表单字符串; document.body.appendChild(div); document.forms[0].submit(); div.remove(); 第2种 <template> <view v-html"formAliPay"…...

探索YOLO技术:目标检测的高效解决方案

第一章&#xff1a;计算机视觉中图像的基础认知 第二章&#xff1a;计算机视觉&#xff1a;卷积神经网络(CNN)基本概念(一) 第三章&#xff1a;计算机视觉&#xff1a;卷积神经网络(CNN)基本概念(二) 第四章&#xff1a;搭建一个经典的LeNet5神经网络(附代码) 第五章&#xff1…...

vmware虚拟机安装使用教程【视频】

vmware虚拟机安装使用教程【视频】 VMware是一款强大的桌面级虚拟化软件&#xff0c;它允许用户在单个计算机上同时运行多个操作系统&#xff0c;每个操作系统都被称为一个虚拟机&#xff08;VM&#xff09;。这种技术不仅方便了软件测试、系统开发&#xff0c;还便于资源管理&…...

2025系统架构师(一考就过):案例之三:架构风格总结

软件架构风格是描述某一特定应用领域中系统组织方式的惯用模式&#xff0c;按照软件架构风格&#xff0c;物联网系统属于&#xff08; &#xff09;软件架构风格。 A:层次型 B:事件系统 C:数据线 D:C2 答案&#xff1a;A 解析&#xff1a; 物联网分为多个层次&#xff0…...

渗透测试实验

1、seacmsv9注入管理员密码 获取管理员账号&#xff08;name&#xff09; http://www.test2.com/comment/api/index.php?gid1&page2&rlist[]%27,%20extractvalue(1,%20concat_ws(0x20,%200x5c,(select%20(name)from%20sea_admin))),%27 2、获取管理员密码 http://www…...

CCA社群共識聯盟正式上線

2025年2月25日——BAF區塊鏈產業聯盟基金會旗下的CCA社群共識聯盟業務於今日正式全網啟動。作為區塊鏈行業的創新平台,CCA社群共識聯盟秉承誠信、公平、共贏的核心原則,致力於為全球社群夥伴打造一個更加開放、透明與高效的合作生態,推動區塊鏈產業的健康發展。 創新平台,助力…...

京东-零售-数据研发面经【附答案】

近期&#xff0c;有参加春招的同学和我交流了他的面试历程&#xff0c;我针对这些内容进行了细致的总结与梳理&#xff0c;并在此分享出来&#xff0c;希望能助力大家学习与借鉴。 1.八股文 1&#xff09;HashMap的底层原理是什么【见V6.0面试笔记 Java基础部分第19题】 2&am…...

python中的JSON数据格式

文章目录 什么是json主要功能Python数据和Json数据的相互转化 什么是json JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据。JSON本质上是一个带有特定格式的字符串。 主要功能 json就是一种在各个编程语言中流通的数据格式&#xff0c;负责不同编…...

ubuntu+aarch64+dbeaver安装【亲测,避坑】

一&#xff1a;访问 Oracle JDK&#xff0c;下载jdk-11.0.26_linux-aarch64_bin.tar.gz 二&#xff1a;解压 tar -xvzf jdk-11.0.20_linux-x64_bin.tar.gz三&#xff1a;将解压后的 JDK 文件夹移动到 /usr/lib/jvm 目录 sudo mv jdk-11.0.26 /usr/lib/jvm/四&#xff1a;进入…...

Java 大视界 -- 基于 Java 的大数据机器学习模型压缩与部署优化(99)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…...

vscode中使用PlatformIO创建工程加载慢

最近使用vscodeplatformIO开发esp32s3&#xff0c;第一次创建工程时加载速度很慢&#xff0c;查询资料解决问题&#xff0c;特此记录。 1.新建环境变量pyhton 此电脑-属性-高级系统设置中&#xff08;直接搜索高级系统设置也行&#xff09;&#xff0c;添加系统变量&#xff…...

微信小程序数据绑定与事件处理:打造动态交互体验

在上一篇中&#xff0c;我们学习了如何搭建微信小程序的开发环境并创建了一个简单的“Hello World”页面。然而&#xff0c;一个真正的小程序不仅仅是静态内容的展示&#xff0c;它需要与用户进行动态交互。本文将深入探讨微信小程序中的数据绑定和事件处理机制&#xff0c;通过…...

力扣 下一个排列

交换位置&#xff0c;双指针&#xff0c;排序。 题目 下一个排列即在组成的排列中的下一个大的数&#xff0c;然后当这个排列为降序时即这个排列最大&#xff0c;因为大的数在前面&#xff0c;降序排列的下一个数即升序。所以&#xff0c;要是想找到当前排列的下一个排列&…...

JavaWeb 学习笔记

前端基础 HTML-CSS <!doctype html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport"content"widthdevice-width, user-scalableno, initial-scale1.0, maximum-scale1.0, minimum-scale1.0…...

Linux7-线程

一、前情回顾 chdir();功能&#xff1a; 函数用于改变当前进程的工作目录。 参数&#xff1a;路径&#xff08;Path&#xff09;&#xff1a;这是一个字符串参数&#xff0c;表示要切换到的目标目录的路径。 返回值&#xff1a; 成功&#xff1a;在成功改变当前工作目…...

在线VS离线TTS(语音合成芯片)有哪些优势-AIOT智能语音产品方案

离线 TTS 存在语音质量欠佳、音色选择有限、语言支持单一更新困难、占用资源多、适应性差、难以个性化定制等痛点 01更新维护困难 由于是离线模式&#xff0c;难以及时获取最新的语音数据和算法更新&#xff0c;无法得到持续改进。 02占用本地资源 需要在设备本地存储较大的…...

结构型模式 - 代理模式 (Proxy Pattern)

结构型模式 - 代理模式 (Proxy Pattern) 代理模式是一种结构型设计模式&#xff0c;它允许通过代理对象来控制对另一个对象&#xff08;目标对象&#xff09;的访问。代理对象充当目标对象的接口&#xff0c;客户端通过代理对象间接访问目标对象。 分为两大类 静态代理&#…...

el-select滚动获取下拉数据;el-select滚动加载

el-select下拉获取数据 1.解决问题2.封装MyScrollSelect组件3.使用MyScrollSelect组件 1.解决问题 场景&#xff1a;下拉数据量过大&#xff0c;后端提供一个分页查询接口&#xff1b;需要每次滚动加载下一页的下拉数据 且单选的状态&#xff0c;需要支持回显&#xff0c;通过n…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...