萌新学 Python 之 random 函数
random 模块:主要用来生成随机数
先导入包:import random
randint(a, b),生成 [a, b] 之间的整数,包含边界 a 和 b,a 和 b 为整数
random(),生成的是 [0,1) 之间的浮点数,包含 0 不包含 1
randrange(起始, 结束, 步长),生成 [起始, 结束) 之间的整数,步长默认为 1
uniform(a, b),生成 [a, b] 之间的浮点数
gauss(期望值, 标准差),生成高斯分布(正态分布)的浮点数
seed(整数),随机种子数,不带参数,以当前时间生成初始种子数,当使用的种子数相同时,随机生成的序列数就相同
shuffle(列表),随机将原列表的元素打乱
sample(序列, 指定的长度),随机抽取序列中指定长度的元素,返回列表
choices(序列, weights = 相对权重, cum_weights = 累加权重, k = 抽取次数),
随机从序列中抽取 k 次元素,返回列表,默认随机抽取的每个元素概率相同
import random
print(len(dir(random)), dir(random))# randint(a, b),生成 [a, b] 之间的整数,包含边界 a 和 b,a 和 b 为整数
print(random.randint(1, 10))# random(),生成的是 [0,1) 之间的浮点数,包含 0 不包含 1
print(random.random())# randrange(起始, 结束, 步长),生成 [起始, 结束) 之间的整数,步长默认为 1
print(random.randrange(1, 10))
print(random.randrange(1, 10, 2))
print(random.randrange(10, 1, -2))# uniform(a, b),生成 [a, b] 之间的浮点数
print(random.uniform(1.1, 2.2))# gauss(期望值, 标准差),生成高斯分布(正态分布)的浮点数
print(random.gauss(0, 1))
print([random.gauss(0, 1) for _ in range(50)])# seed(整数),随机种子数,不带参数,以当前时间生成初始种子数,当使用的种子数相同时,随机生成的序列数就相同
random.seed(1)
print(random.random())# shuffle(列表),随机将原列表的元素打乱
lst = ['a', 'b', 'c', 'd']
print(lst) # ['a', 'b', 'c', 'd']
# 打乱列表元素
random.shuffle(lst)
print(lst) # ['c', 'd', 'b', 'a']# sample(序列, 指定的长度),随机抽取序列中指定长度的元素,返回列表
lst = ['a', 'b', 'c', 'd']
print(random.sample(lst, 2)) # ['d', 'b']# choices(序列, weights = 相对权重, cum_weights = 累加权重, k = 抽取次数),随机从序列中抽取 k 次元素,返回列表,默认随机抽取的每个元素概率相同
# 从列表中随机抽取一个元素,每个元素抽到的概率一样
print(random.choices(['a', 'b', 'c', 'd'])) # ['b']
# 从列表中随机抽取两个元素,概率一样
print(random.choices(['a', 'b', 'c', 'd'], k = 2)) # ['b', 'a']
# 从列表中随机抽取多个元素,概率一样
print(random.choices(['a', 'b', 'c', 'd'], k = 10)) # ['b', 'd', 'b', 'c', 'd', 'c', 'b', 'd', 'c', 'a']
# weights 相对权重,从列表中随机抽取多个元素,设置每个元素的权重 weights = [1, 2, 3, 4],a 的概率是 1/(1+2+3+4),以此类推,抽到 d 的概率更高
print(random.choices(['a', 'b', 'c', 'd'], weights=[1, 2, 3, 4], k = 10)) # ['c', 'a', 'd', 'a', 'd', 'd', 'd', 'd', 'c', 'd']
''' 累加权重与相对权重的计算公式:cum_weights = [sum(weights[:i+1]) for i in range(len(weights))]比如 weights = [1, 2, 3, 4],cum_weights = [1, 1+2, 1+2+3, 1+2+3+4] = [1, 3, 6, 10] '''
累加权重与相对权重的计算公式:
cum_weights = [sum(weights[:i+1]) for i in range(len(weights))]
比如 weights = [1, 2, 3, 4],cum_weights = [1, 1+2, 1+2+3, 1+2+3+4] = [1, 3, 6, 10]
如果 cum_weights = [1, 1, 1, 1],那么 weights = [1, 0, 0, 0]
cum_weights 和 weights 只能使用其中之一
相关文章:
萌新学 Python 之 random 函数
random 模块:主要用来生成随机数 先导入包:import random randint(a, b),生成 [a, b] 之间的整数,包含边界 a 和 b,a 和 b 为整数 random(),生成的是 [0,1) 之间的浮点数,包含 0 不包含 1 r…...
2-2linux系统IO
文章目录 linux系统文件io1 open /close1.1 open1.2 close1.3 示例1.3.1 打开已经存在的文件 2 read/write2.1 read2.2 write使用 遗留问题:新创建的文件权限很奇怪3 lseek3.1 文件指针的移动3.2 文件拓展 perror函数 linux系统文件io 系统函数是系统专有的函数&am…...
周边游平台设计与实现(代码+数据库+LW)
摘 要 在如今社会上,关于信息上面的处理,没有任何一个企业或者个人会忽视,如何让信息急速传递,并且归档储存查询,采用之前的纸张记录模式已经不符合当前使用要求了。所以,对旅游信息管理的提升,…...
视频批量分段工具
参考原文:视频批量分段工具 选择视频文件 当您启动这款视频批量分段工具程序后,有两种便捷的方式来选择要处理的视频文件。其一,您可以点击程序界面中的 “文件” 菜单,在下拉选项里找到 “选择视频文件” 按钮并点击;…...
Android -- 使用Sharepreference保存List储存失败,原因是包含Bitmap,drawable等类型数据
1.报错信息如下: class android.content.res.ColorStateList declares multiple JSON fields named mChangingConfigurations 2.Bean类属性如下: data class AppInfoBean( val appName: String?, val appIcon: Drawable, val appPackage: String?,…...
java项目之基于ssm的图书馆书库管理系统(源码+文档)
风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的图书馆书库管理系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 该系统可以实现图书信息管理…...
编写一个程序,输入一个数字并输出其阶乘(Python版)
编写一个程序,输入一个数字并输出其阶乘 要计算一个数字的阶乘,可以编写一个简单的 Python 程序,使用循环或者递归来实现: 1. 使用 for 循环计算阶乘 # 输入一个数字 num int(input("请输入一个数字: "))# 初始化阶乘结果 facto…...
dify基础之prompts
摘要:在大型语言模型(LLM)应用中,Prompt(提示词)是连接用户意图与模型输出的核心工具。本文从概念、组成、设计原则到实践案例,系统讲解如何通过Prompt解锁LLM的潜能,提升生成内容的…...
实践教程:使用DeepSeek实现PDF转Word的高效方案
🎈Deepseek推荐工具 PDF文件因其跨平台、格式稳定的特性被广泛使用,但在内容编辑场景中,用户常需将PDF转换为可编辑的Word文档。传统的付费工具(如Adobe Acrobat)或在线转换平台存在成本高、隐私风险等问题。本文将使…...
网络安全审计员
在当今数字化时代,随着信息技术的迅猛发展,网络安全问题日益凸显,成为各行各业不容忽视的重要议题。特别是对于企业、政府机构等组织而言,网络安全不仅关乎数据资产的安全,更与组织的声誉、客户信任乃至法律法规的遵从…...
算法-二叉树篇13-路径总和
路径总和 力扣题目链接 题目描述 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回…...
如何设计一个短链系统?
短链系统设计的关键要点: 系统功能实现 短链生成:接收长链接,先检查是否已有对应短链,存在则直接返回。否则,使用分布式 ID 生成器(如号段模式、SnowFlake 算法、数据库自增 ID、Redis 自增等)生成唯一 ID,或通过哈希算法(如 MurmurHash)处理长链接得到哈希值。再将生…...
医疗行业电脑终端如何防病毒——火绒企业版杀毒软件
医疗物联网技术广泛应用,使得医院网络空间中增加了诸多新型终端设备。这些设备类型多样、型号各异,风险暴露面积大。火绒安全对医疗机构终端安全出现的问题、不足、需求等,提出整体解决方案。 医疗行业终端安全防护痛点 系统老旧 医院、区…...
云平台DeepSeek满血版:引领AI推理革新,开启智慧新时代
引言:人工智能的未来——云平台的卓越突破 在当今科技飞速发展的时代,人工智能(AI)技术正深刻地改变着我们生活与工作方式的方方面面。作为AI领域的创新者与领航者,云平台始终走在技术前沿,凭借无穷的热情…...
Java进阶——数据类型深入解析
Java数据类型深入解析 本文主要介绍 Java 数据类型的相关知识,包括8 种基本类型、默认值、字面量表示、自动装箱与拆箱、类型转换规则(隐式转换、强制转换)、浮点型精度问题、字符与字符串、引用类型比较与常量池、数值溢出与处理、类型推断等…...
R语言+AI提示词:贝叶斯广义线性混合效应模型GLMM生物学Meta分析
全文链接:https://tecdat.cn/?p40797 本文旨在帮助0基础或只有简单编程基础的研究学者,通过 AI 的提示词工程,使用 R 语言完成元分析,包括数据处理、模型构建、评估以及结果解读等步骤(点击文末“阅读原文”获取完整代…...
深度解析 ANSI X9.31 TR-31:金融行业密钥管理核心标准20250228
深度解析 ANSI X9.31 TR-31:金融行业密钥管理核心标准 在当今数字化金融时代,信息安全至关重要,而密钥管理则是保障金融数据安全的核心环节。ANSI X9.31 TR-31作为金融行业密钥管理的关键标准,为对称密钥的全生命周期管理提供了坚…...
视频字幕识别和翻译
下载的视频很多不是汉语的,我们需要用剪映将语音识别出来作为字幕压制到视频中去。 剪映6.0以后语音识别需要收费,但是低版本还是没有问题。 如果想要非汉语字幕转成中文,剪映低版本不提供这样功能。但是,用剪映导出识别字幕&am…...
Spring Boot 流式响应豆包大模型对话能力
当Spring Boot遇见豆包大模型:一场流式响应的"魔法吟唱"仪式 一、前言:关于流式响应的奇妙比喻 想象一下你正在火锅店点单,如果服务员必须等所有菜品都备齐才一次性端上来,你可能会饿得把菜单都啃了。而流式响应就像贴…...
算法之领域算法
领域算法 ♥一些领域算法知识体系♥ | Java 全栈知识体系...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
