当前位置: 首页 > news >正文

萌新学 Python 之 random 函数

random 模块:主要用来生成随机数

先导入包:import random

randint(a, b),生成 [a, b] 之间的整数,包含边界 a 和 b,a 和 b 为整数

random(),生成的是 [0,1) 之间的浮点数,包含 0 不包含 1

randrange(起始, 结束, 步长),生成 [起始, 结束) 之间的整数,步长默认为 1

uniform(a, b),生成 [a, b] 之间的浮点数

gauss(期望值, 标准差),生成高斯分布(正态分布)的浮点数

seed(整数),随机种子数,不带参数,以当前时间生成初始种子数,当使用的种子数相同时,随机生成的序列数就相同

shuffle(列表),随机将原列表的元素打乱

sample(序列, 指定的长度),随机抽取序列中指定长度的元素,返回列表

choices(序列, weights = 相对权重, cum_weights = 累加权重, k = 抽取次数),

随机从序列中抽取 k 次元素,返回列表,默认随机抽取的每个元素概率相同

import random
print(len(dir(random)), dir(random))# randint(a, b),生成 [a, b] 之间的整数,包含边界 a 和 b,a 和 b 为整数
print(random.randint(1, 10))# random(),生成的是 [0,1) 之间的浮点数,包含 0 不包含 1
print(random.random())# randrange(起始, 结束, 步长),生成 [起始, 结束) 之间的整数,步长默认为 1
print(random.randrange(1, 10))
print(random.randrange(1, 10, 2))
print(random.randrange(10, 1, -2))# uniform(a, b),生成 [a, b] 之间的浮点数
print(random.uniform(1.1, 2.2))# gauss(期望值, 标准差),生成高斯分布(正态分布)的浮点数
print(random.gauss(0, 1))
print([random.gauss(0, 1) for _ in range(50)])# seed(整数),随机种子数,不带参数,以当前时间生成初始种子数,当使用的种子数相同时,随机生成的序列数就相同
random.seed(1)
print(random.random())# shuffle(列表),随机将原列表的元素打乱
lst = ['a', 'b', 'c', 'd']
print(lst)                                              # ['a', 'b', 'c', 'd']
# 打乱列表元素
random.shuffle(lst)
print(lst)                                              # ['c', 'd', 'b', 'a']# sample(序列, 指定的长度),随机抽取序列中指定长度的元素,返回列表
lst = ['a', 'b', 'c', 'd']
print(random.sample(lst, 2))                            # ['d', 'b']# choices(序列, weights = 相对权重, cum_weights = 累加权重, k = 抽取次数),随机从序列中抽取 k 次元素,返回列表,默认随机抽取的每个元素概率相同
# 从列表中随机抽取一个元素,每个元素抽到的概率一样
print(random.choices(['a', 'b', 'c', 'd']))             # ['b']
# 从列表中随机抽取两个元素,概率一样
print(random.choices(['a', 'b', 'c', 'd'], k = 2))      # ['b', 'a']
# 从列表中随机抽取多个元素,概率一样
print(random.choices(['a', 'b', 'c', 'd'], k = 10))     # ['b', 'd', 'b', 'c', 'd', 'c', 'b', 'd', 'c', 'a']
# weights 相对权重,从列表中随机抽取多个元素,设置每个元素的权重 weights = [1, 2, 3, 4],a 的概率是 1/(1+2+3+4),以此类推,抽到 d 的概率更高
print(random.choices(['a', 'b', 'c', 'd'], weights=[1, 2, 3, 4], k = 10))  # ['c', 'a', 'd', 'a', 'd', 'd', 'd', 'd', 'c', 'd']
''' 累加权重与相对权重的计算公式:cum_weights = [sum(weights[:i+1]) for i in range(len(weights))]比如 weights = [1, 2, 3, 4],cum_weights = [1, 1+2, 1+2+3, 1+2+3+4] = [1, 3, 6, 10] '''

累加权重与相对权重的计算公式:

cum_weights = [sum(weights[:i+1]) for i in range(len(weights))]

比如 weights = [1, 2, 3, 4],cum_weights = [1, 1+2, 1+2+3, 1+2+3+4] = [1, 3, 6, 10] 

如果 cum_weights = [1,  1,  1,  1],那么 weights = [1, 0, 0, 0]

cum_weights 和 weights 只能使用其中之一

相关文章:

萌新学 Python 之 random 函数

random 模块:主要用来生成随机数 先导入包:import random randint(a, b),生成 [a, b] 之间的整数,包含边界 a 和 b,a 和 b 为整数 random(),生成的是 [0,1) 之间的浮点数,包含 0 不包含 1 r…...

2-2linux系统IO

文章目录 linux系统文件io1 open /close1.1 open1.2 close1.3 示例1.3.1 打开已经存在的文件 2 read/write2.1 read2.2 write使用 遗留问题:新创建的文件权限很奇怪3 lseek3.1 文件指针的移动3.2 文件拓展 perror函数 linux系统文件io 系统函数是系统专有的函数&am…...

周边游平台设计与实现(代码+数据库+LW)

摘 要 在如今社会上,关于信息上面的处理,没有任何一个企业或者个人会忽视,如何让信息急速传递,并且归档储存查询,采用之前的纸张记录模式已经不符合当前使用要求了。所以,对旅游信息管理的提升&#xff0c…...

视频批量分段工具

参考原文:视频批量分段工具 选择视频文件 当您启动这款视频批量分段工具程序后,有两种便捷的方式来选择要处理的视频文件。其一,您可以点击程序界面中的 “文件” 菜单,在下拉选项里找到 “选择视频文件” 按钮并点击&#xff1b…...

Android -- 使用Sharepreference保存List储存失败,原因是包含Bitmap,drawable等类型数据

1.报错信息如下: class android.content.res.ColorStateList declares multiple JSON fields named mChangingConfigurations 2.Bean类属性如下: data class AppInfoBean( val appName: String?, val appIcon: Drawable, val appPackage: String?,…...

java项目之基于ssm的图书馆书库管理系统(源码+文档)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的图书馆书库管理系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 该系统可以实现图书信息管理…...

编写一个程序,输入一个数字并输出其阶乘(Python版)

编写一个程序,输入一个数字并输出其阶乘 要计算一个数字的阶乘,可以编写一个简单的 Python 程序,使用循环或者递归来实现: 1. 使用 for 循环计算阶乘 # 输入一个数字 num int(input("请输入一个数字: "))# 初始化阶乘结果 facto…...

dify基础之prompts

摘要:在大型语言模型(LLM)应用中,Prompt(提示词)是连接用户意图与模型输出的核心工具。本文从概念、组成、设计原则到实践案例,系统讲解如何通过Prompt解锁LLM的潜能,提升生成内容的…...

实践教程:使用DeepSeek实现PDF转Word的高效方案

🎈Deepseek推荐工具 PDF文件因其跨平台、格式稳定的特性被广泛使用,但在内容编辑场景中,用户常需将PDF转换为可编辑的Word文档。传统的付费工具(如Adobe Acrobat)或在线转换平台存在成本高、隐私风险等问题。本文将使…...

网络安全审计员

在当今数字化时代,随着信息技术的迅猛发展,网络安全问题日益凸显,成为各行各业不容忽视的重要议题。特别是对于企业、政府机构等组织而言,网络安全不仅关乎数据资产的安全,更与组织的声誉、客户信任乃至法律法规的遵从…...

算法-二叉树篇13-路径总和

路径总和 力扣题目链接 题目描述 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回…...

如何设计一个短链系统?

短链系统设计的关键要点: 系统功能实现 短链生成:接收长链接,先检查是否已有对应短链,存在则直接返回。否则,使用分布式 ID 生成器(如号段模式、SnowFlake 算法、数据库自增 ID、Redis 自增等)生成唯一 ID,或通过哈希算法(如 MurmurHash)处理长链接得到哈希值。再将生…...

医疗行业电脑终端如何防病毒——火绒企业版杀毒软件

医疗物联网技术广泛应用,使得医院网络空间中增加了诸多新型终端设备。这些设备类型多样、型号各异,风险暴露面积大。火绒安全对医疗机构终端安全出现的问题、不足、需求等,提出整体解决方案。 医疗行业终端安全防护痛点 系统老旧 医院、区…...

云平台DeepSeek满血版:引领AI推理革新,开启智慧新时代

引言:人工智能的未来——云平台的卓越突破 在当今科技飞速发展的时代,人工智能(AI)技术正深刻地改变着我们生活与工作方式的方方面面。作为AI领域的创新者与领航者,云平台始终走在技术前沿,凭借无穷的热情…...

Java进阶——数据类型深入解析

Java数据类型深入解析 本文主要介绍 Java 数据类型的相关知识,包括8 种基本类型、默认值、字面量表示、自动装箱与拆箱、类型转换规则(隐式转换、强制转换)、浮点型精度问题、字符与字符串、引用类型比较与常量池、数值溢出与处理、类型推断等…...

R语言+AI提示词:贝叶斯广义线性混合效应模型GLMM生物学Meta分析

全文链接:https://tecdat.cn/?p40797 本文旨在帮助0基础或只有简单编程基础的研究学者,通过 AI 的提示词工程,使用 R 语言完成元分析,包括数据处理、模型构建、评估以及结果解读等步骤(点击文末“阅读原文”获取完整代…...

深度解析 ANSI X9.31 TR-31:金融行业密钥管理核心标准20250228

深度解析 ANSI X9.31 TR-31:金融行业密钥管理核心标准 在当今数字化金融时代,信息安全至关重要,而密钥管理则是保障金融数据安全的核心环节。ANSI X9.31 TR-31作为金融行业密钥管理的关键标准,为对称密钥的全生命周期管理提供了坚…...

视频字幕识别和翻译

下载的视频很多不是汉语的,我们需要用剪映将语音识别出来作为字幕压制到视频中去。 剪映6.0以后语音识别需要收费,但是低版本还是没有问题。 如果想要非汉语字幕转成中文,剪映低版本不提供这样功能。但是,用剪映导出识别字幕&am…...

Spring Boot 流式响应豆包大模型对话能力

当Spring Boot遇见豆包大模型:一场流式响应的"魔法吟唱"仪式 一、前言:关于流式响应的奇妙比喻 想象一下你正在火锅店点单,如果服务员必须等所有菜品都备齐才一次性端上来,你可能会饿得把菜单都啃了。而流式响应就像贴…...

算法之领域算法

领域算法 ♥一些领域算法知识体系♥ | Java 全栈知识体系...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...