通过 PromptTemplate 生成干净的 SQL 查询语句并执行SQL查询语句
问题描述
在使用 LangChain 和 Llama 模型生成 SQL 查询时,遇到了 sqlite3.OperationalError 错误。错误信息如下:
OperationalError: (sqlite3.OperationalError) near "```sql
SELECT Name
FROM MediaType
LIMIT 5;
```": syntax error
[SQL: ```sql
SELECT Name
FROM MediaType
LIMIT 5;
```]
错误发生的原因是生成的 SQL 查询包含了不必要的 Markdown 代码块标记 ```,也就是在生成SQL语句的过程中,产生了其他的不干净文本,导致 SQL 语法错误。
最终解决方案
通过修改 PromptTemplate 来生成干净的 SQL 查询,确保生成的查询不包含任何 Markdown 代码块标记或附加评论。以下是解决方案的详细步骤和代码实现:
1. 初始化环境
首先,初始化所需的环境变量和模型:
import getpass
import os
from langchain.chat_models import init_chat_model
from langchain_core.prompts import PromptTemplate
from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool# 如果没有设置 GROQ_API_KEY,则提示用户输入
if not os.environ.get("GROQ_API_KEY"):os.environ["GROQ_API_KEY"] = getpass.getpass("Enter API key for Groq: ")# 初始化 Llama 模型,使用 Groq 后端
llm = init_chat_model("llama-3.3-70b-versatile", model_provider="groq", temperature=0)
2. 定义自定义提示模板
定义一个自定义的 PromptTemplate,用于生成干净的 SQL 查询:
custom_prompt = PromptTemplate(input_variables=["dialect", "input", "table_info", "top_k"],template="""You are a SQL expert using {dialect}.
Given the following table schema:
{table_info}
Generate a syntactically correct SQL query to answer the question: "{input}".
Limit the results to at most {top_k} rows.
Return only the SQL query without any additional commentary or Markdown formatting.
"""
)
3. 创建 SQL 查询链
创建一个 SQL 查询链,并使用自定义提示模板:
write_query = create_sql_query_chain(llm, db, prompt=custom_prompt)
4. 构造输入数据字典
构造输入数据字典,其中包含方言、表结构、问题和行数限制:
input_data = {"dialect": db.dialect, # 数据库方言,如 "sqlite""table_info": db.get_table_info(), # 表结构信息"input": "What name of MediaType is?", # 问题"top_k": 5 # 行数限制
}
5. 调用链生成并执行 SQL 查询
调用链生成 SQL 查询,确保生成的查询不包含 Markdown 代码块标记,然后执行查询并打印结果:
response = write_query.invoke(input_data)
query = response["query"]# 执行 SQL 查询并打印结果
execute_query = QuerySQLDataBaseTool(db=db)
result = execute_query.invoke({"query": query})
print(result)
总结
通过修改 PromptTemplate 来生成 SQL 查询时,明确要求返回的 SQL 查询不包含任何附加评论或 Markdown 格式,确保生成的 SQL 查询是干净的、可执行的。这样可以避免由多余的标记导致的 SQL 语法错误。
最后提供完整代码:
import getpass
import os
from langchain.chat_models import init_chat_model
from langchain_core.prompts import PromptTemplate
from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool
from dotenv import load_dotenv
from pyprojroot import here
from langchain.chains import create_sql_query_chain
from langchain_community.agent_toolkits import create_sql_agent
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.utilities import SQLDatabaseload_dotenv()# 如果没有设置 GROQ_API_KEY,则提示用户输入
if not os.environ.get("GROQ_API_KEY"):os.environ["GROQ_API_KEY"] = getpass.getpass("Enter API key for Groq: ")sqldb_directory = here("data/Chinook.db")
db = SQLDatabase.from_uri(f"sqlite:///{sqldb_directory}")
table_info = db.get_table_info(["Album"]) # 注意需要传递列表
print(f"\n Original table info: {table_info}")# 初始化 Llama 模型,使用 Groq 后端
llm = init_chat_model("llama-3.3-70b-specdec", model_provider="groq", temperature=0)
# 定义自定义提示模板,用于生成 SQL 查询
custom_prompt = PromptTemplate(input_variables=["dialect", "input", "table_info", "top_k"],template="""You are a SQL expert using {dialect}.
Given the following table schema:
{table_info}
Generate a syntactically correct SQL query to answer the question: "{input}".
Limit the results to at most {top_k} rows.
Return only the SQL query without any additional commentary or Markdown formatting.
"""
)write_query = create_sql_query_chain(llm, db,prompt=custom_prompt)
# 构造输入数据字典,其中包含方言、表结构、问题和行数限制
input_data = {"dialect": db.dialect, # 数据库方言,如 "sqlite""table_info": db.get_table_info(), # 表结构信息"question": "What name of MediaType is?","top_k": 5
}# 调用链生成 SQL 查询,返回结果为一个字典,包含键 "query"
write_query_response = write_query.invoke(input_data)
print('\n write_query result:',write_query_response)#执行SQL语句
execute_query = QuerySQLDataBaseTool(db=db)
execute_response = execute_query.invoke(write_query_response)
print('\n execute_response result:',execute_response)#两个动作合起来搞成链
chain = write_query | execute_query
result_chain = chain.invoke(input_data)
print('\n result_chain==',result_chain)
输出:

相关文章:
通过 PromptTemplate 生成干净的 SQL 查询语句并执行SQL查询语句
问题描述 在使用 LangChain 和 Llama 模型生成 SQL 查询时,遇到了 sqlite3.OperationalError 错误。错误信息如下: OperationalError: (sqlite3.OperationalError) near "sql SELECT Name FROM MediaType LIMIT 5; ": syntax error [SQL: …...
用大白话解释缓存Redis +MongoDB是什么有什么用怎么用
Redis和MongoDB是什么? Redis:像你家的“小冰箱”,专门存高频使用的食物(数据)。它是基于内存的键值数据库,读写速度极快(每秒超10万次操作)。比如你每次打开手机App,用…...
计算机毕业设计SpringBoot+Vue.js汽车销售网站(源码+文档+PPT+讲解)
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
【0010】HTML水平线标签详解
如果你觉得我的文章写的不错,请关注我哟,请点赞、评论,收藏此文章,谢谢! 本文内容体系结构如下: 一、水平线标签概述 在HTML中,<hr>标签用于在网页上插入一条水平线,其主要…...
FastExcel与Reactor响应式编程深度集成技术解析
一、技术融合背景与核心价值 在2025年企业级应用开发中,大规模异步Excel处理与响应式系统架构的结合已成为技术刚需。FastExcel与Reactor的整合方案,通过以下技术协同实现突破性性能: 内存效率革命:FastExcel的流式字节操作与Re…...
Netty是如何实现零拷贝的?
大家好,我是锋哥。今天分享关于【Netty是如何实现零拷贝的?】面试题。希望对大家有帮助; Netty是如何实现零拷贝的? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Netty是一个高性能的Java网络应用框架,它…...
【大模型➕知识图谱】大模型结合医疗知识图谱:解锁智能辅助诊疗系统新范式
【大模型➕知识图谱】大模型结合医疗知识图谱:解锁智能辅助诊疗系统新范式 大模型结合医疗知识图谱:解锁智能辅助诊疗系统新范式引言一、系统架构1.1 系统架构图1.2 架构模块说明1.2.1 用户输入1.2.2 大模型(语义理解与意图识别)1.2.3 Agent(问题解析与任务分配)1.2.4 问…...
Spring Boot @Component注解介绍
Component 是 Spring 中的一个核心注解,用于声明一个类为 Spring 管理的组件(Bean)。它是一个通用的注解,可以用于任何层次的类(如服务层、控制器层、持久层等)。通过 Component 注解,Spring 会…...
MulFS-CAP: Multimodal Fusion-supervisedCross-modal
一种用于无注册红外-可见图像融合的单阶段框架。与传统的两阶段方法不同,MulFS-CAP结合了隐式注册和融合,简化了处理流程并增强了实用性。该方法使用共享的浅层特征编码器,同时进行特征对齐和图像融合。通过引入可学习的模态字典,…...
WordPress多语言插件GTranslate
GTranslate是一个免费的WordPress多语言插件,它允许您将网站内容翻译成多种语言。这个插件提供了一个简单易用的界面,让您可以在WordPress后台直接进行翻译操作。以下是GTranslate插件的一些主要特点: 免费使用:GTranslate插件完…...
wordpress子分类调用父分类名称和链接的3种方法
专为导航而生,在wordpress模板制作过程中常常会在做breadcrumbs导航时会用到,子分类调用父分类的名称和链接,下面这段简洁的代码,可以完美解决这个问题。 <?php echo get_category_parents( $cat, true, » ); ?…...
Prometheus + Grafana 监控
Prometheus Grafana 监控 官网介绍:Prometheus 是一个开源系统 监控和警报工具包最初由 SoundCloud 构建。自 2012 年成立以来,许多 公司和组织已经采用了 Prometheus,并且该项目具有非常 活跃的开发人员和用户社区。它现在是一个独立的开源…...
初学STM32之简单认识IO口配置(学习笔记)
在使用51单片机的时候基本上不需要额外的配置IO,不过在使用特定的IO的时候需要额外的设计外围电路,比如PO口它是没有内置上拉电阻的。因此若想P0输出高电平,它就需要外接上拉电平。(当然这不是说它输入不需要上拉电阻,…...
springboot2.7.18升级springboot3.3.0遇到的坑
druid的警告,警告如下: 运行警告2025-02-28T09:20:31.28508:00 WARN 18800 --- [ restartedMain] trationDelegate$BeanPostProcessorChecker : Bean com.alibaba.druid.spring.boot3.autoconfigure.stat.DruidSpringAopConfiguration of type [com.a…...
gtest 和 gmock讲解
Google Test(gtest)和 Google Mock(gmock)是 Google 开发的用于 C 的测试框架和模拟框架,以下是对它们的详细讲解: Google Test(gtest) 简介 Google Test 是一个用于 C 的单元测试框…...
GC垃圾回收介绍及GC算法详解
目录 引言 GC的作用域 什么是垃圾回收? 常见的GC算法 1.引用计数法 2.复制算法 3.标记清除 4.标记整理 小总结 5.分代收集算法 ps:可达性分析算法? 可达性分析的作用 可达性分析与垃圾回收算法的关系 结论 引言 在编程世界中,…...
2020 年英语(一)考研真题 笔记(更新中)
Section I Use of English(完型填空) 原题 Directions:Read the following text. Choose the best word (s) for each numbered blank and mark A, B, C or D on the ANSWER SHEET. (10 points) Even if families are less likely to si…...
【springboot】Spring 官方抛弃了 Java 8!新idea如何创建java8项目
解决idea至少创建jdk17项目 问题 idea现在只能创建最少jdk17,不能创建java8了吗?解决 问题 idea现在只能创建最少jdk17,不能创建java8了吗 我本来以为是 IDEA 版本更新导致的 Bug,开始还没在意。 直到我今天自己初始化项目时才发现&am…...
playbin之autoplug_factories源码剖析
一、autoplug_factories_cb /* Called when we must provide a list of factories to plug to pad with caps.* We first check if we have a sink that can handle the format and if we do, we* return NULL, to expose the pad. If we have no sink (or the sink does not…...
正浩创新内推:校招、社招EcoFlow社招内推码: FRQU1CY
EcoFlow社招内推码: FRQU1CY 投递链接: https://ecoflow.jobs.feishu.cn/s/Vo75bmlNr6c...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...
字符串哈希+KMP
P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...
Cursor AI 账号纯净度维护与高效注册指南
Cursor AI 账号纯净度维护与高效注册指南:解决限制问题的实战方案 风车无限免费邮箱系统网页端使用说明|快速获取邮箱|cursor|windsurf|augment 问题背景 在成功解决 Cursor 环境配置问题后,许多开发者仍面临账号纯净度不足导致的限制问题。无论使用 16…...
STL 2迭代器
文章目录 1.迭代器2.输入迭代器3.输出迭代器1.插入迭代器 4.前向迭代器5.双向迭代器6.随机访问迭代器7.不同容器返回的迭代器类型1.输入 / 输出迭代器2.前向迭代器3.双向迭代器4.随机访问迭代器5.特殊迭代器适配器6.为什么 unordered_set 只提供前向迭代器? 1.迭代器…...
