当前位置: 首页 > news >正文

通过 PromptTemplate 生成干净的 SQL 查询语句并执行SQL查询语句

问题描述

在使用 LangChain 和 Llama 模型生成 SQL 查询时,遇到了 sqlite3.OperationalError 错误。错误信息如下:

OperationalError: (sqlite3.OperationalError) near "```sql
SELECT Name 
FROM MediaType 
LIMIT 5;
```": syntax error
[SQL: ```sql
SELECT Name 
FROM MediaType 
LIMIT 5;
```]

错误发生的原因是生成的 SQL 查询包含了不必要的 Markdown 代码块标记 ```,也就是在生成SQL语句的过程中,产生了其他的不干净文本,导致 SQL 语法错误。

最终解决方案

通过修改 PromptTemplate 来生成干净的 SQL 查询,确保生成的查询不包含任何 Markdown 代码块标记或附加评论。以下是解决方案的详细步骤和代码实现:

1. 初始化环境

首先,初始化所需的环境变量和模型:

import getpass
import os
from langchain.chat_models import init_chat_model
from langchain_core.prompts import PromptTemplate
from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool# 如果没有设置 GROQ_API_KEY,则提示用户输入
if not os.environ.get("GROQ_API_KEY"):os.environ["GROQ_API_KEY"] = getpass.getpass("Enter API key for Groq: ")# 初始化 Llama 模型,使用 Groq 后端
llm = init_chat_model("llama-3.3-70b-versatile", model_provider="groq", temperature=0)

2. 定义自定义提示模板

定义一个自定义的 PromptTemplate,用于生成干净的 SQL 查询:

custom_prompt = PromptTemplate(input_variables=["dialect", "input", "table_info", "top_k"],template="""You are a SQL expert using {dialect}.
Given the following table schema:
{table_info}
Generate a syntactically correct SQL query to answer the question: "{input}".
Limit the results to at most {top_k} rows.
Return only the SQL query without any additional commentary or Markdown formatting.
"""
)

3. 创建 SQL 查询链

创建一个 SQL 查询链,并使用自定义提示模板:

write_query = create_sql_query_chain(llm, db, prompt=custom_prompt)

4. 构造输入数据字典

构造输入数据字典,其中包含方言、表结构、问题和行数限制:

input_data = {"dialect": db.dialect,                    # 数据库方言,如 "sqlite""table_info": db.get_table_info(),        # 表结构信息"input": "What name of MediaType is?",    # 问题"top_k": 5                                # 行数限制
}

5. 调用链生成并执行 SQL 查询

调用链生成 SQL 查询,确保生成的查询不包含 Markdown 代码块标记,然后执行查询并打印结果:

response = write_query.invoke(input_data)
query = response["query"]# 执行 SQL 查询并打印结果
execute_query = QuerySQLDataBaseTool(db=db)
result = execute_query.invoke({"query": query})
print(result)

总结

通过修改 PromptTemplate 来生成 SQL 查询时,明确要求返回的 SQL 查询不包含任何附加评论或 Markdown 格式,确保生成的 SQL 查询是干净的、可执行的。这样可以避免由多余的标记导致的 SQL 语法错误。

最后提供完整代码:

import getpass
import os
from langchain.chat_models import init_chat_model
from langchain_core.prompts import PromptTemplate
from langchain_community.tools.sql_database.tool import QuerySQLDataBaseTool
from dotenv import load_dotenv
from pyprojroot import here
from langchain.chains import create_sql_query_chain
from langchain_community.agent_toolkits import create_sql_agent
from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
from langchain_community.utilities import SQLDatabaseload_dotenv()# 如果没有设置 GROQ_API_KEY,则提示用户输入
if not os.environ.get("GROQ_API_KEY"):os.environ["GROQ_API_KEY"] = getpass.getpass("Enter API key for Groq: ")sqldb_directory = here("data/Chinook.db")
db = SQLDatabase.from_uri(f"sqlite:///{sqldb_directory}")
table_info = db.get_table_info(["Album"])  # 注意需要传递列表
print(f"\n Original table info: {table_info}")#  初始化 Llama 模型,使用 Groq 后端
llm = init_chat_model("llama-3.3-70b-specdec", model_provider="groq", temperature=0)
# 定义自定义提示模板,用于生成 SQL 查询
custom_prompt = PromptTemplate(input_variables=["dialect", "input", "table_info", "top_k"],template="""You are a SQL expert using {dialect}.
Given the following table schema:
{table_info}
Generate a syntactically correct SQL query to answer the question: "{input}".
Limit the results to at most {top_k} rows.
Return only the SQL query without any additional commentary or Markdown formatting.
"""
)write_query  = create_sql_query_chain(llm, db,prompt=custom_prompt)
# 构造输入数据字典,其中包含方言、表结构、问题和行数限制
input_data = {"dialect": db.dialect,                    # 数据库方言,如 "sqlite""table_info": db.get_table_info(),          # 表结构信息"question": "What name of MediaType is?","top_k": 5
}# 调用链生成 SQL 查询,返回结果为一个字典,包含键 "query"
write_query_response = write_query.invoke(input_data)
print('\n write_query result:',write_query_response)#执行SQL语句
execute_query = QuerySQLDataBaseTool(db=db)
execute_response = execute_query.invoke(write_query_response)
print('\n execute_response result:',execute_response)#两个动作合起来搞成链
chain = write_query | execute_query
result_chain = chain.invoke(input_data)
print('\n result_chain==',result_chain)

输出:
在这里插入图片描述

相关文章:

通过 PromptTemplate 生成干净的 SQL 查询语句并执行SQL查询语句

问题描述 在使用 LangChain 和 Llama 模型生成 SQL 查询时,遇到了 sqlite3.OperationalError 错误。错误信息如下: OperationalError: (sqlite3.OperationalError) near "sql SELECT Name FROM MediaType LIMIT 5; ": syntax error [SQL: …...

用大白话解释缓存Redis +MongoDB是什么有什么用怎么用

Redis和MongoDB是什么? Redis:像你家的“小冰箱”,专门存高频使用的食物(数据)。它是基于内存的键值数据库,读写速度极快(每秒超10万次操作)。比如你每次打开手机App,用…...

计算机毕业设计SpringBoot+Vue.js汽车销售网站(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

【0010】HTML水平线标签详解

如果你觉得我的文章写的不错&#xff0c;请关注我哟&#xff0c;请点赞、评论&#xff0c;收藏此文章&#xff0c;谢谢&#xff01; 本文内容体系结构如下&#xff1a; 一、水平线标签概述 在HTML中&#xff0c;<hr>标签用于在网页上插入一条水平线&#xff0c;其主要…...

FastExcel与Reactor响应式编程深度集成技术解析

一、技术融合背景与核心价值 在2025年企业级应用开发中&#xff0c;大规模异步Excel处理与响应式系统架构的结合已成为技术刚需。FastExcel与Reactor的整合方案&#xff0c;通过以下技术协同实现突破性性能&#xff1a; 内存效率革命&#xff1a;FastExcel的流式字节操作与Re…...

Netty是如何实现零拷贝的?

大家好&#xff0c;我是锋哥。今天分享关于【Netty是如何实现零拷贝的&#xff1f;】面试题。希望对大家有帮助&#xff1b; Netty是如何实现零拷贝的&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Netty是一个高性能的Java网络应用框架&#xff0c;它…...

【大模型➕知识图谱】大模型结合医疗知识图谱:解锁智能辅助诊疗系统新范式

【大模型➕知识图谱】大模型结合医疗知识图谱:解锁智能辅助诊疗系统新范式 大模型结合医疗知识图谱:解锁智能辅助诊疗系统新范式引言一、系统架构1.1 系统架构图1.2 架构模块说明1.2.1 用户输入1.2.2 大模型(语义理解与意图识别)1.2.3 Agent(问题解析与任务分配)1.2.4 问…...

Spring Boot @Component注解介绍

Component 是 Spring 中的一个核心注解&#xff0c;用于声明一个类为 Spring 管理的组件&#xff08;Bean&#xff09;。它是一个通用的注解&#xff0c;可以用于任何层次的类&#xff08;如服务层、控制器层、持久层等&#xff09;。通过 Component 注解&#xff0c;Spring 会…...

MulFS-CAP: Multimodal Fusion-supervisedCross-modal

一种用于无注册红外-可见图像融合的单阶段框架。与传统的两阶段方法不同&#xff0c;MulFS-CAP结合了隐式注册和融合&#xff0c;简化了处理流程并增强了实用性。该方法使用共享的浅层特征编码器&#xff0c;同时进行特征对齐和图像融合。通过引入可学习的模态字典&#xff0c;…...

WordPress多语言插件GTranslate

GTranslate是一个免费的WordPress多语言插件&#xff0c;它允许您将网站内容翻译成多种语言。这个插件提供了一个简单易用的界面&#xff0c;让您可以在WordPress后台直接进行翻译操作。以下是GTranslate插件的一些主要特点&#xff1a; 免费使用&#xff1a;GTranslate插件完…...

wordpress子分类调用父分类名称和链接的3种方法

专为导航而生&#xff0c;在wordpress模板制作过程中常常会在做breadcrumbs导航时会用到&#xff0c;子分类调用父分类的名称和链接&#xff0c;下面这段简洁的代码&#xff0c;可以完美解决这个问题。 <?php echo get_category_parents( $cat, true, &raquo; ); ?…...

Prometheus + Grafana 监控

Prometheus Grafana 监控 官网介绍&#xff1a;Prometheus 是一个开源系统 监控和警报工具包最初由 SoundCloud 构建。自 2012 年成立以来&#xff0c;许多 公司和组织已经采用了 Prometheus&#xff0c;并且该项目具有非常 活跃的开发人员和用户社区。它现在是一个独立的开源…...

初学STM32之简单认识IO口配置(学习笔记)

在使用51单片机的时候基本上不需要额外的配置IO&#xff0c;不过在使用特定的IO的时候需要额外的设计外围电路&#xff0c;比如PO口它是没有内置上拉电阻的。因此若想P0输出高电平&#xff0c;它就需要外接上拉电平。&#xff08;当然这不是说它输入不需要上拉电阻&#xff0c;…...

springboot2.7.18升级springboot3.3.0遇到的坑

druid的警告&#xff0c;警告如下&#xff1a; 运行警告2025-02-28T09:20:31.28508:00 WARN 18800 --- [ restartedMain] trationDelegate$BeanPostProcessorChecker : Bean com.alibaba.druid.spring.boot3.autoconfigure.stat.DruidSpringAopConfiguration of type [com.a…...

gtest 和 gmock讲解

Google Test&#xff08;gtest&#xff09;和 Google Mock&#xff08;gmock&#xff09;是 Google 开发的用于 C 的测试框架和模拟框架&#xff0c;以下是对它们的详细讲解&#xff1a; Google Test&#xff08;gtest&#xff09; 简介 Google Test 是一个用于 C 的单元测试框…...

GC垃圾回收介绍及GC算法详解

目录 引言 GC的作用域 什么是垃圾回收&#xff1f; 常见的GC算法 1.引用计数法 2.复制算法 3.标记清除 4.标记整理 小总结 5.分代收集算法 ps:可达性分析算法&#xff1f; 可达性分析的作用 可达性分析与垃圾回收算法的关系 结论 引言 在编程世界中&#xff0c;…...

2020 年英语(一)考研真题 笔记(更新中)

Section I Use of English&#xff08;完型填空&#xff09; 原题 Directions&#xff1a;Read the following text. Choose the best word (s) for each numbered blank and mark A, B, C or D on the ANSWER SHEET. (10 points) Even if families are less likely to si…...

【springboot】Spring 官方抛弃了 Java 8!新idea如何创建java8项目

解决idea至少创建jdk17项目 问题 idea现在只能创建最少jdk17&#xff0c;不能创建java8了吗?解决 问题 idea现在只能创建最少jdk17&#xff0c;不能创建java8了吗 我本来以为是 IDEA 版本更新导致的 Bug&#xff0c;开始还没在意。 直到我今天自己初始化项目时才发现&am…...

playbin之autoplug_factories源码剖析

一、autoplug_factories_cb /* Called when we must provide a list of factories to plug to pad with caps.* We first check if we have a sink that can handle the format and if we do, we* return NULL, to expose the pad. If we have no sink (or the sink does not…...

正浩创新内推:校招、社招EcoFlow社招内推码: FRQU1CY

EcoFlow社招内推码: FRQU1CY 投递链接: https://ecoflow.jobs.feishu.cn/s/Vo75bmlNr6c...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...