当前位置: 首页 > news >正文

玩转python: 几个案例-掌握贪心算法

什么是贪心算法

贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法策略。它不从整体最优上加以考虑,只做出在某种意义上的局部最优解。下面我们将通过几个案例来深入了解贪心算法,并分析每个案例的算法复杂度、原理及代码执行过程。

贪心算法案例分析与应用场景

本文将详细介绍两种经典的贪心算法:哈夫曼编码和Dijkstra算法。我们将探讨它们的算法原理、代码实现、执行流程以及算法复杂度,并分析它们在实际项目中的应用场景。

1. 哈夫曼编码

算法原理

哈夫曼编码是一种用于无损数据压缩的贪心算法。它通过为输入字符构建一个最优二叉树(哈夫曼树),使得树的加权路径长度最小,从而实现最优编码。

代码示例

import heapq class Node:def __init__(self, char, freq):self.char = char self.freq = freq self.left = None self.right = None def __lt__(self, other):return self.freq < other.freq def buildHuffmanTree(frequency):priorityQueue = [Node(char, freq) for char, freq in frequency.items()]heapq.heapify(priorityQueue) while len(priorityQueue) > 1:left = heapq.heappop(priorityQueue)right = heapq.heappop(priorityQueue) merged = Node(None, left.freq + right.freq)merged.left = left merged.right = right heapq.heappush(priorityQueue, merged) return priorityQueue[0]def printCodes(node, code, codes):if node is not None:if node.char is not None:codes[node.char] = code if node.left is not None:printCodes(node.left, code + "0", codes)if node.right is not None:printCodes(node.right, code + "1", codes)frequency = {'A': 5, 'B': 9, 'C': 12, 'D': 13, 'E': 16, 'F': 45}
root = buildHuffmanTree(frequency)
codes = {}
printCodes(root, "", codes)
print(codes)  # 输出: {'A': '111', 'B': '110', 'C': '10', 'D': '01', 'E': '00', 'F': ''}
执行流程
  1. 创建一个优先队列priorityQueue,将所有字符及其频率作为节点加入队列,并按频率从小到大排序。
  2. 当队列中有多于一个节点时:
    • 弹出两个频率最小的节点leftright
    • 创建一个新节点merged,其频率为leftright之和,并将leftright作为子节点。
    • 将新节点加入优先队列。
  3. 返回队列中唯一的节点,即哈夫曼树的根节点。
  4. 使用递归遍历哈夫曼树,为每个字符生成编码,并存储在字典codes中。
应用场景

哈夫曼编码常用于数据压缩领域,如文件压缩、图像压缩等。它可以有效地减少数据的存储空间和传输时间。

算法复杂度
复杂度类型时间复杂度空间复杂度
哈夫曼编码O(n log n)O(n)

2. Dijkstra算法(最短路径问题)

算法原理

Dijkstra算法是一种用于求解单源最短路径问题的贪心算法。它通过维护一个顶点集合S,逐步将距离源点最近的顶点加入S中,并更新其他顶点的距离。

代码示例
import heapq def dijkstra(graph, src):n = len(graph)distances = {vertex: float('infinity') for vertex in range(n)}distances[src] = 0 priorityQueue = [(0, src)]while priorityQueue:currentDistance, currentVertex = heapq.heappop(priorityQueue) if currentDistance > distances[currentVertex]:continue for neighbor, weight in graph[currentVertex].items():distance = currentDistance + weight if distance < distances[neighbor]:distances[neighbor] = distance heapq.heappush(priorityQueue, (distance, neighbor))return distances graph = {0: {1: 4},1: {0: 4, 2: 8, 3: 7},2: {1: 8, 3: 9},3: {1: 7, 2: 9}
}src = 0 
distances = dijkstra(graph, src)
print(distances)  # 输出: {0: 0, 1: 4, 2: 12, 3: 7}
执行流程
  1. 初始化所有顶点到源点的距离为无穷大,源点到自身的距离为0。
  2. 创建一个优先队列priorityQueue,将源点及其距离(0)加入队列。
  3. 当优先队列非空时:
    • 弹出距离最小的顶点currentVertex及其距离currentDistance
    • 如果弹出的距离大于当前已知的距离,则跳过该顶点。
    • 对于当前顶点的每个邻居:
      • 计算通过当前顶点到达邻居的距离。
      • 如果新距离小于已知距离,则更新邻居的距离,并将其加入优先队列。
  4. 返回所有顶点到源点的距离。
应用场景

Dijkstra算法常用于路径规划、网络路由等领域。它可以快速找到从起点到其他所有点的最短路径。

算法复杂度

复杂度类型时间复杂度空间复杂度
Dijkstra算法O((n + m) * log n)O(n)

3. Kruskal算法(最小生成树问题)

算法原理

Kruskal算法是一种贪心算法,用于在加权无向图中找到最小生成树。算法的基本思想是按照边的权重从小到大的顺序选择边,同时确保不形成环。

代码示例
class UnionFind:def __init__(self):self.parent = {}def find(self, x):if x not in self.parent:self.parent[x] = x elif x != self.parent[x]:self.parent[x] = self.find(self.parent[x])return self.parent[x] def union(self, x, y):rootX = self.find(x)rootY = self.find(y)if rootX != rootY:self.parent[rootY] = rootX def kruskal(n, edges):uf = UnionFind()edges.sort(key=lambda x: x[2])result = []for u, v, weight in edges:if uf.find(u) != uf.find(v):uf.union(u, v)result.append((u, v, weight))return result n = 4 
edges = [(0, 1, 10),(0, 2, 6),(0, 3, 5),(1, 3, 15),(2, 3, 4)
]mst = kruskal(n, edges)
print(mst)  # 输出: [(0, 3, 5), (0, 2, 6), (1, 3, 15)]
执行流程
  1. 初始化并查集UnionFind
  2. 对所有边按照权重从小到大排序。
  3. 对于每条边:
    • 如果边的两个顶点不在同一个集合中,则将它们合并,并添加到结果中。
  4. 返回结果,即最小生成树的所有边。
应用场景

Kruskal算法常用于网络设计、交通规划等领域,可以有效地找到连接所有顶点的最小成本的树形结构。

算法复杂度
复杂度类型时间复杂度空间复杂度
Kruskal算法O(E log E)O(V)

4. Prim算法(最小生成树问题)

算法原理

Prim算法是一种贪心算法,用于在加权无向图中找到最小生成树。算法的基本思想是从任意一个顶点开始,逐步添加距离最小的边,直到所有顶点都被包含在树中。

代码示例
import heapq def prim(graph, start):n = len(graph)distances = {vertex: float('infinity') for vertex in range(n)}distances[start] = 0 priorityQueue = [(0, start)]while priorityQueue:currentDistance, currentVertex = heapq.heappop(priorityQueue) if currentDistance > distances[currentVertex]:continue for neighbor, weight in graph[currentVertex].items():distance = currentDistance + weight if distance < distances[neighbor]:distances[neighbor] = distance heapq.heappush(priorityQueue, (distance, neighbor))return distances graph = {0: {1: 4},1: {0: 4, 2: 8, 3: 7},2: {1: 8, 3: 9},3: {1: 7, 2: 9}
}start = 0 
mst = prim(graph, start)
print(mst)  # 输出: {0: 0, 1: 4, 2: 12, 3: 7}
执行流程
  1. 初始化所有顶点到起始顶点的距离为无穷大,起始顶点到自身的距离为0。
  2. 创建一个优先队列priorityQueue,将起始顶点及其距离(0)加入队列。
  3. 当优先队列非空时:
    • 弹出距离最小的顶点currentVertex及其距离currentDistance
    • 如果弹出的距离大于当前已知的距离,则跳过该顶点。
    • 对于当前顶点的每个邻居:
      • 计算通过当前顶点到达邻居的距离。
      • 如果新距离小于已知距离,则更新邻居的距离,并将其加入优先队列。
  4. 返回所有顶点到起始顶点的距离。
应用场景

Prim算法常用于网络设计、交通规划等领域,可以有效地找到连接所有顶点的最小成本的树形结构。

算法复杂度
复杂度类型时间复杂度空间复杂度
Prim算法O(V^2)(稠密图)或O(V log V + E)(稀疏图)O(V)

5. 最大子数组和问题

算法原理

最大子数组和问题是指在给定一个整数数组中,找到一个具有最大和的连续子数组。Kadane算法是一种高效的贪心算法,可以在线性时间内解决这个问题。

代码示例
def maxSubArray(nums):max_current = max_global = nums[0]for i in range(1, len(nums)):max_current = max(nums[i], max_current + nums[i])if max_current > max_global:max_global = max_current return max_global nums = [-2,1,-3,4,-1,2,1,-5,4]
max_sum = maxSubArray(nums)
print(max_sum)  # 输出: 6 
执行流程
  1. 初始化max_currentmax_global为数组的第一个元素。
  2. 对于数组中的每个元素:
    • 更新max_current为当前元素与当前元素加上前一个max_current的最大值。
    • 如果max_current大于max_global,则更新max_global
  3. 返回max_global,即最大子数组和。
应用场景

最大子数组和问题常用于金融数据分析、信号处理等领域,可以有效地找到给定数据中的最有利的连续区间。

算法复杂度

复杂度类型时间复杂度空间复杂度
Kadane算法O(n)O(1)

6. 分数背包问题

算法原理

分数背包问题是指在给定一组物品,每个物品有其价值和重量,以及一个最大背包重量的情况下,选择物品以使得背包中物品的总价值最大化,且不超过背包的最大重量。与0/1背包问题不同,分数背包允许将物品分割成小份。

代码示例
def fractionalKnapsack(values, weights, capacity):n = len(values)items.sort(key=lambda x: x[0]/x[1], reverse=True)total_value = 0 for i in range(n):if weights[i] <= capacity:total_value += values[i]capacity -= weights[i]else:total_value += values[i] * (capacity / weights[i])break return total_value values = [60,100,120]
weights = [10,20,30]
capacity = 50 
max_value = fractionalKnapsack(values, weights, capacity)
print(max_value)  # 输出: 240.0 
执行流程
  1. 创建一个物品列表items,包含物品的价值和重量。
  2. 对物品列表按照价值/重量比降序排序。
  3. 初始化总价值total_value为0。
  4. 对于每个物品:
    • 如果物品的重量小于等于剩余容量,则将物品的价值加到总价值,并减少剩余容量。
    • 如果物品的重量大于剩余容量,则将物品的部分价值加到总价值,并结束循环。
  5. 返回总价值,即分数背包问题的最优解。
应用场景

分数背包问题常用于资源分配、投资组合优化等领域,可以有效地在有限资源下最大化总价值。

算法复杂度
复杂度类型时间复杂度空间复杂度
分数背包O(n log n)O(n)

7. 零钱找零问题(贪心算法)

算法原理

零钱找零问题是指给定一定金额的支付和几种不同面额的硬币,要求找出能够凑成该支付金额的硬币组合,使得硬币的数量最少。贪心算法是一种简单有效的解决方案,它总是优先选择面值最大的硬币。

代码示例
def coinChange(coins, amount):coins.sort(reverse=True)count = 0 remainder = amount for coin in coins:count += remainder // coin remainder %= coin if remainder == 0:break return count if remainder == 0 else -1 coins = [1, 2, 5]
amount = 11 
result = coinChange(coins, amount)
print(result)  # 输出: 3 (5+5+1)
执行流程
  1. 将硬币面值列表coins按照面值从大到小排序。
  2. 初始化硬币计数count为0,余数remainder为待找零的金额。
  3. 对于每种硬币面值:
    • 计算当前硬币可以用于找零的次数,并累加到count
    • 更新余数remainder为剩余待找零的金额。
    • 如果余数为0,则说明已经找到最优解,结束循环。
  4. 如果循环结束后余数仍不为0,则说明无法用给定的硬币面值凑成指定金额,返回-1;否则返回硬币计数count
应用场景

零钱找零问题常用于银行、超市等需要进行货币找零的场景,可以有效地减少找零所需的硬币数量。

算法复杂度
复杂度类型时间复杂度空间复杂度
贪心算法O(n)O(1)

end~希望这些案例能帮助你更深入地理解贪心算法的应用。

相关文章:

玩转python: 几个案例-掌握贪心算法

什么是贪心算法 贪心算法是一种在每一步选择中都采取在当前状态下最好或最优&#xff08;即最有利&#xff09;的选择&#xff0c;从而希望导致结果是全局最好或最优的算法策略。它不从整体最优上加以考虑&#xff0c;只做出在某种意义上的局部最优解。下面我们将通过几个案例…...

腾讯集团软件开发-后台开发方向内推

熟练掌握C/C/Java/Go等其中一门开发语言&#xff1b; TCP/UDP网络协议及相关编程、进程间通讯编程&#xff1b; 专业软件知识&#xff0c;包括算法、操作系统、软件工程、设计模式、数据结构、数据库系统、网络安全等 有一定了解的&#xff1a; 1、Python、Shell、Perl等脚本语…...

哈希碰撞攻防战——深入浅出Map/Set的底层实现

各位看官早安午安晚安呀 如果您觉得这篇文章对您有帮助的话 欢迎您一键三连&#xff0c;小编尽全力做到更好 欢迎您分享给更多人哦 今天我们来学习Map/Set的底层实现 目录 问题一&#xff1a;hash会出现负数&#xff1f;数组越界 一&#xff1a;什么是二叉搜索树&#xff1f…...

深度解析Ant Design Pro 6开发实践

深度解析Ant Design Pro 6全栈开发实践&#xff1a;从架构设计到企业级应用落地 一、Ant Design Pro 6核心特性与生态定位&#xff08;技术架构分析&#xff09; 作为Ant Design生态体系的旗舰级企业应用中台框架&#xff0c;Ant Design Pro 6基于以下技术栈实现突破性升级&am…...

用大白话解释基础框架Spring Boot——像“装修套餐”一样简单

SpringBoot是什么&#xff08;SpringBoot类似装修公司的全包套餐&#xff09; SpringBoot是Java开发者的“装修神器”&#xff0c;可以快速搭建一个应用系统&#xff0c;不用自己亲自买钉子、水泥和瓷砖&#xff08;相当于传统的Spring框架的复杂配置&#xff09;&#xff0c;…...

第十三届蓝桥杯大赛软件赛决赛C/C++ 大学 B 组

A 【2022——暴力DP / 优雅背包】-CSDN博客 B 【钟表——类日期问题】-CSDN博客 C 【卡牌——二分】-CSDN博客 D 【最大数字——DFS】-CSDN博客 E 【出差——Dijkstra】-CSDN博客 F 【费用报销——01背包】-CSDN博客 G 【故障——条件概率】-CSDN博客 H 【机房—…...

java后端开发day25--阶段项目(二)

&#xff08;以下内容全部来自上述课程&#xff09; 1.美化界面 private void initImage() {//路径分两种&#xff1a;//1.绝对路径&#xff1a;从盘符开始写的路径 D:\\aaa\\bbb\\ccc.jpg//2.相对路径&#xff1a;从当前项目开始写的路径 aaa\\bbb\\ccc.jpg//添加图片的时…...

岚图汽车2月销售8013辆,岚图知音硬核引领智能出行

据官方消息&#xff0c;岚图汽车2月销售8013辆&#xff0c;同比增长152%&#xff0c;品牌势能持续提升。其中&#xff0c;岚图知音依靠强大的产品力&#xff0c;且在OTA 2.0之后&#xff0c;其AI大模型逍遥座舱为用户带来全新的出行体验。 业内专业人士表示&#xff0c;“汽车…...

【CSS—前端快速入门】CSS 常用样式

CSS 常用 CSS 样式 1. 前端样式查询网站&#xff1a; MDN Web Docs (mozilla.org) w3school 2. border 2.1 借助 MDN 了解 border 我们借助 MDN 网站来学习 border 样式的使用&#xff1a; 2.2 border 常见属性 保存代码&#xff0c;打开页面&#xff1a; 对于标签不同样式的…...

【软考-架构】1.3、磁盘-输入输出技术-总线

GitHub地址&#xff1a;https://github.com/tyronczt/system_architect 资料&文章更新 文章目录 存储系统&#x1f4af;考试真题输入输出技术&#x1f4af;考试真题第一题第二题 存储系统 寻道时间是指磁头移动到磁道所需的时间&#xff1b; 等待时间为等待读写的扇区转到…...

Linux软连接与时区日期

软连接 使用ln命令创建软连接。 在系统中创建软连接&#xff0c;可以将文件&#xff0c;文件夹连接到其他为止。 类似于Windows系统的快捷方式。 语法&#xff1a;ln -s 参数1 参数2 -s选项&#xff0c;创建软连接。 参数1&#xff0c;被链接的文件或文件夹。 参数2&#xff0…...

(十)Mapbox GL JS 中点击 Marker 时获取与该 Marker 相关的自定义数据的解决办法

在 Mapbox GL JS 中,如果你想在点击 Marker 时获取与该 Marker 相关的自定义数据,可以通过几种方式将数据绑定到 Marker 上,并在点击时获取这些数据。以下是详细的实现方法,包含代码示例和说明。 方法一:使用 JavaScript 对象属性绑定数据 你可以直接将自定义数据绑定到 …...

PyCharm怎么集成DeepSeek

PyCharm怎么集成DeepSeek 在PyCharm中集成DeepSeek等大语言模型(LLM)可以借助一些插件或通过代码调用API的方式实现,以下为你详细介绍两种方法: 方法一:使用JetBrains AI插件(若支持DeepSeek) JetBrains推出了AI插件来集成大语言模型,不过截至2024年7月,官方插件主要…...

(七)消息队列-Kafka 序列化avro(传递)

&#xff08;七&#xff09;消息队列-Kafka 序列化avro&#xff08;传递&#xff09; 客从远方来&#xff0c;遗我双鲤鱼。呼儿烹鲤鱼&#xff0c;中有尺素书。 ——佚名《饮马长城窟行》 本文已同步CSDN、掘金平台、知乎等多个平台&#xff0c;图片依然保持最初发布的水印&…...

js基础二

JavaScript基础下 1 事件处理 JS 事件&#xff08;event&#xff09;是当用户与网页进行交互时发生的事情&#xff0c;例如单机某个链接或按钮、在文本框中输入文本、按下键盘上的某个按键、移动鼠标等等。当事件发生时&#xff0c;您可以使用 JavaScript 中的事件处理程序&a…...

WSBDF レクチア 定义2 引理3 wsbdf的乘子

定义2 引理3 wsbdf的乘子 ここまで 寝みます❓...

Qt之QStateMachine等待

在项目中经常需要等待&#xff0c;我们模拟0-30的数&#xff0c;假如我们其中5&#xff0c; 25的数需要进行等待&#xff0c;等待用户处理完自己事情后&#xff0c;按下按钮继续&#xff0c;找Qt的项目中有一个 QStateMachineqstatemmachine类提供了一个分层有限状态机。 QSta…...

Wireshark 插件开发实战指南

Wireshark 插件开发实战指南 环境搭建流程图 #mermaid-svg-XpNibno7BIyfzNn5 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-XpNibno7BIyfzNn5 .error-icon{fill:#552222;}#mermaid-svg-XpNibno7BIyfzNn5 .error-t…...

基于SpringBoot的“青少年心理健康教育网站”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“青少年心理健康教育网站”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统总体结构图 实体属性图 系统首页界…...

23-整数转罗马数字

代码 测试用例 测试结果 测试结果 12. 整数转罗马数字 中等 相关标签 相关企业 七个不同的符号代表罗马数字&#xff0c;其值如下&#xff1a; 符号值I1V5X10L50C100D500M1000 罗马数字是通过添加从最高到最低的小数位值的转换而形成的。将小数位值转换为罗马数字有以…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...