pytorch 模型测试
在使用 PyTorch 进行模型测试时,一般包含加载测试数据、加载训练好的模型、进行推理以及评估模型性能等步骤。以下为你详细介绍每个步骤及对应的代码示例。
1. 导入必要的库
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
2. 加载测试数据
假设我们使用的是 CIFAR - 10 数据集作为示例,你需要定义数据预处理的转换操作,然后加载测试数据集。
# 定义数据预处理的转换操作
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 加载测试数据集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,shuffle=False, num_workers=2)# 类别标签
classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
3. 定义模型结构
如果你已经有训练好的模型,这一步可以跳过。但为了完整性,这里给出一个简单的卷积神经网络(CNN)示例。
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(torch.relu(self.conv1(x)))x = self.pool(torch.relu(self.conv2(x)))x = x.view(-1, 16 * 5 * 5)x = torch.relu(self.fc1(x))x = torch.relu(self.fc2(x))x = self.fc3(x)return xnet = Net()
4. 加载训练好的模型
假设你已经将训练好的模型保存为 cifar_net.pth 文件,现在可以加载它。
# 加载模型
net.load_state_dict(torch.load('cifar_net.pth'))
5. 进行推理和评估
在测试阶段,我们需要将模型设置为评估模式,然后遍历测试数据集,对每个样本进行推理,并计算模型的准确率。
# 将模型设置为评估模式
net.eval()correct = 相关文章:
pytorch 模型测试
在使用 PyTorch 进行模型测试时,一般包含加载测试数据、加载训练好的模型、进行推理以及评估模型性能等步骤。以下为你详细介绍每个步骤及对应的代码示例。 1. 导入必要的库 import torch import torch.nn as nn import torchvision import torchvision.transforms as trans…...
在kali linux中kafka的配置和使用
官方文档 一、安装依赖 删除原有的jdk sudo apt remove --purge openjdk-\* sudo apt clean安装 Java (JDK 11) sudo apt install openjdk-11-jdk -y # 验证安装 java -version二、下载并解压 Kafka 下载 Kafka wget https://dlcdn.apache.org/kafka/3.9.0/kafka_2.13-3.9.0.t…...
代码规范和简化标准
代码规范和简化标准是编写高质量、可维护、可扩展和可读代码的基本原则。遵循这些标准不仅能提高团队协作效率,还能减少出错的概率和后期维护的成本。以下是一些常见的代码规范和简化标准: 1. 命名规范 变量命名: 使用具有描述性的名称&…...
基于SpringBoot的校园二手交易平台(源码+论文+部署教程)
运行环境 校园二手交易平台运行环境如下: • 前端:Vue • 后端:Java • IDE工具:IntelliJ IDEA(可自行更换) • 技术栈:SpringBoot Vue MySQL 主要功能 校园二手交易平台主要包含前台和…...
【51单片机】快速入门
动手实践 > 理论空谈!从点亮LED开始,逐步扩展功能,2周可入门基础。 一、51单片机基础概念 什么是51单片机? 基于Intel 8051架构的8位微控制器,广泛用于嵌入式开发。 核心特性:4KB ROM、128B RAM、32个…...
YOLOv8+QT搭建目标检测项目
2024年7月YOLOv8QT初步搭建目标检测(避坑)_qt yolov8-CSDN博客YOLOv8QT初步搭建目标检测 2024年7月YOLOv8QT初步搭建目标检测(避坑)_qt yolov8-CSDN博客 yolov8的可视化界面(一、可视化界面设计)_yolo 可…...
刷题记录10
力扣72. 编辑距离 给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作: 插入一个字符删除一个字符替换一个字符 解题思路: 本题与583. 两个字符串的删除操作其实是一样…...
数学软件Matlab下载|支持Win+Mac网盘资源分享
如大家所了解的,Matlab与Maple、Mathematica并称为三大数学软件。Matlab应用广泛,常被用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 Matlab将数值分析、矩阵计算、科学…...
5G学习笔记之BWP
我们只会经历一种人生,我们选择的人生。 参考:《5G NR标准》、《5G无线系统指南:如微见著,赋能数字化时代》 目录 1. 概述2. BWP频域位置3. 初始与专用BWP4. 默认BWP5. 切换BWP 1. 概述 在LTE的设计中,默认所有终端均能处理最大2…...
Spark 介绍
Spark 架构 Spark 是一个基于内存计算的大数据处理框架,相比 Hadoop 的 MapReduce,它能够提供 更高效的迭代计算 和 流式计算能力。Spark 采用 主从架构(Master-Slave),主要包括 Driver、Cluster Manager、Worker、Ex…...
mac Homebrew安装、更新失败
我这边使用brew安装git-lfs 一直报这个错: curl: (35) LibreSSL SSL_connect: SSL_ERROR_SYSCALL更新brew update也是报这个错误。最后使用使用大佬提供的脚本进行操作: /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/mast…...
【实战 ES】实战 Elasticsearch:快速上手与深度实践-2.2.3案例:电商订单日志每秒10万条写入优化
👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 Elasticsearch批量写入性能调优实战:2.2.3 案例:电商订单日志每秒10万条写入优化1. 原始架构与瓶颈分析1.1 初始集群配置1.2 性能瓶颈定位 2. 全链路…...
http的post请求不走http的整个缓存策略吗?
http的post请求不走http的整个缓存策略吗? DeepSeek R1 思考 33 秒 思考过程 嗯,用户问的是HTTP的POST请求是否不遵循整个缓存策略。我需要先回忆一下HTTP缓存的基本机制,然后考虑不同请求方法的缓存处理。 首先,HTTP缓存通常涉…...
c++ 预处理器和iostream 文件
在C中,预处理器和<iostream>头文件各自扮演关键角色,二者协同工作以实现程序的输入输出功能。以下是它们的详细关系和作用: 1. 预处理器的作用 处理预处理指令:预处理器在编译前执行,处理所有以#开头的指令&…...
【前端】前端设计中的响应式设计详解
文章目录 前言一、响应式设计的定义与作用二、响应式设计的原则三、响应式设计的实现四、响应式设计的最佳实践总结 前言 在当今数字化时代,网站和应用程序需要适应各种设备,从桌面电脑到平板电脑和手机。响应式设计应运而生,成为一种可以适…...
探秘基带算法:从原理到5G时代的通信变革【四】Polar 编解码(二)
文章目录 2.3.3 极化编码巴氏参数与信道可靠性比特混合生成矩阵编码举例 2.3.4 极化译码最小单元译码串行抵消译码(SC译码)算法SCL译码算法 2.3.5 总结**Polar 码的优势****Polar 码的主要问题****Polar 码的应用前景** 2.3.6 **参考文档** 本博客为系列…...
打开 Windows Docker Desktop 出现 Docker Engine Stopped 问题
一、关联文章: 1、Docker Desktop 安装使用教程 2、家庭版 Windows 安装 Docker 没有 Hyper-V 问题 3、安装 Windows Docker Desktop - WSL问题 二、问题解析 打开 Docker Desktop 出现问题,如下: Docker Engine Stopped : Docker引擎停止三、解决方法 1、检查服务是否…...
6.人工智能与机器学习
一、人工智能基本原理 1. 人工智能(AI)定义与范畴 核心目标:模拟人类智能行为(如推理、学习、决策)分类: 弱人工智能(Narrow AI):专精单一任务(如AlphaGo、…...
RabbitMQ怎么实现延时支付?
一、使用“死信队列”消息过期时间 1、原理: 设置消息”存活时间“,如果没有被及时消费,就会被丢弃到一个”死信队列“,然后消费者监听这个死信队列处理消息 2、步骤: 2.1、创建两个队列: 2.1.1、普通队…...
vite-vue3使用web-worker应用指南和报错解决
主线程:初始化worker和监听子线程的消息 let worker: any; const salesConfigData ref<any[]>([]); // 显示非上架 const showNotList ref(false);// /src/views/ceshi/salesConfig/worker.js worker new Worker(new URL("/src/views/ceshi/salesConf…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
