康谋分享 | 3DGS:革新自动驾驶仿真场景重建的关键技术
随着自动驾驶技术的迅猛发展,构建高保真、动态的仿真场景成为了行业的迫切需求。传统的三维重建方法在处理复杂场景时常常面临效率和精度的挑战。在此背景下,3D高斯点阵渲染(3DGS)技术应运而生,成为自动驾驶仿真场景重建的关键突破。
一、3DGS技术概述与原理
1、3DGS的技术概述
3DGS是一种基于3D高斯分布的三维场景表示方法。通过将场景中的对象转化为多个3D高斯点,每个点包含位置、协方差矩阵和不透明度等信息,3DGS能够精确地表达复杂场景的几何形状和光照特性。
与传统的神经辐射场(NeRF)方法相比,3DGS在渲染速度和图像质量方面表现出色,弥补了NeRF在动态场景处理和细节保留上的不足。
图1:3DGS重建流程
2、3DGS的技术原理
在3DGS中,首先通过SfM(Structure from Motion)技术进行数据预处理,校准相机位置并恢复其内部和外部参数,生成稀疏点云。然后,基于这些点云初始化一组3D高斯点,每个高斯点的初始位置、协方差矩阵和不透明度都会进行设置。
训练过程中,3DGS通过反向传播不断优化这些高斯点的位置、形状和不透明度。值得注意的是,3DGS采用了自适应密度控制,能够在每次反向传播后去除那些不重要的高斯点,并根据需要对高斯点进行分裂或克隆,以保证场景重建的精度和细节。
图2:训练过程中高斯点的优化
二、3DGS在自动驾驶仿真中的应用
在自动驾驶领域,3DGS技术被广泛应用于高保真仿真场景的重建。通过将多视角图像转化为3D高斯点云,3DGS能够快速、精确地重建复杂的街道场景,为自动驾驶系统的训练和验证提供真实的虚拟环境。例如,Huang等人提出的S³Gaussian方法,通过自监督学习,从4D一致性中分解动态和静态元素,实现了高质量的街道场景重建。
此外,Zhou等人提出的DrivingGaussian方法,针对环视动态自动驾驶场景,发展了基于3D高斯的重建仿真技术。该方法能够有效建模复杂的多尺度背景和前景,提升了自动驾驶系统在复杂环境下的感知能力。
图3:S³Gaussian方法
图4:DrivingGaussian方法
1、3DGS的优势与挑战
(1)优势
高效性:通过显式建模方法,3DGS避免了传统神经网络训练中的计算开销,训练速度更快,渲染效率更高。
精度:3D高斯点可以细致地捕捉场景中的每个细节,从而实现高精度的三维重建。
实时性:3DGS支持实时渲染,适合需要快速响应的应用场景,如自动驾驶仿真。
(2)挑战
场景复杂度:对于极为复杂的三维场景,3DGS可能需要大量的高斯点,这会增加计算负担和内存消耗。
动态场景的支持:目前,3DGS主要集中在静态场景的重建,如何高效地处理动态场景中的物体变化,仍然是一个技术挑战。
三、aiSim的3DGS重建功能
aiSim仿真平台结合3DGS技术,可以提供强大的三维重建功能,极大地提升了自动驾驶仿真测试的效率和精度。
在aiSim中,3DGS被用于从多视角图像中重建复杂的三维场景。aiSim能够精确地捕捉环境的几何形状和光照特性,为自动驾驶系统提供高保真的虚拟环境。这种高精度的三维重建使得自动驾驶算法能够在仿真中进行更为真实的测试,减少了对实际道路测试的依赖。
图5:大FoV相机渲染出现非一致性(左)重建3DGS渲染方案后(右)
aiSim新构建的GGSR通用高斯泼溅渲染器优化了重建场景下光线追踪传感器的渲染效果,增强了广角镜头渲染下的一致性,并能减少伪影的产生,实现高保真度的3DGS重建场景兼容。
在重建的静态场景之上,aiSim支持自定义动态的场景交通流。通过添加动态实体,aiSim可以模拟交通流、行人行为等动态元素,为自动驾驶系统提供更为全面的测试场景。这种动态重建能力使得aiSim在验证自动驾驶系统的泛化能力和应对复杂场景的能力方面,展现出了巨大的优势。
图6:十字路口车辆起步场景
四、结语
3DGS作为一种新兴的三维场景重建技术,凭借其高效、精确和实时的特点,在自动驾驶仿真领域展现出了巨大的潜力。我们有理由相信,未来3DGS将为更多行业带来创新性的解决方案。
▍参考文献
1. 3D Gaussian Splatting for Real-Time Radiance Field Rendering
2. S3Gaussian: Self-Supervised Street Gaussians for Autonomous Driving
3. DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes
我是分享自动驾驶技术的康谋
欢迎关注互动
期待与您的进一步交流
aiSim自动驾驶仿真平台 - 端到端智驾仿真工具 | 高保真环境模拟和场景重建 | 软件在环测试 | 康谋科技https://keymotek.com/adas-simulator-aisim/
相关文章:

康谋分享 | 3DGS:革新自动驾驶仿真场景重建的关键技术
随着自动驾驶技术的迅猛发展,构建高保真、动态的仿真场景成为了行业的迫切需求。传统的三维重建方法在处理复杂场景时常常面临效率和精度的挑战。在此背景下,3D高斯点阵渲染(3DGS)技术应运而生,成为自动驾驶仿真场景重…...

golang学习笔记——go语言安装及系统环境变量设置
文章目录 go语言安装go envgo getgoproxy测试安装 Go 插件安装 Go 插件依赖工具参考资料用户环境变量和系统环境变量用户环境变量系统环境变量示例设置环境变量的步骤设置用户环境变量设置系统环境变量 验证环境变量总结 2024年最火的5大Go框架1. Gin:高并发接口的“…...

Redis|集群 Cluster
文章目录 是什么能干嘛集群算法-分片-槽位slotredis集群的槽位slotredis集群的分片分片槽位的优势slot槽位映射——业界的3种解决方案小厂:哈希取余分区中厂:一致性哈希算法分区大厂:哈希槽分区 面试题:为什么 Redis 集群的最大槽…...

解锁MacOS开发:环境配置与应用开发全攻略
✨✨✨这里是小韩学长yyds的BLOG(喜欢作者的点个关注吧) ✨✨✨想要了解更多内容可以访问我的主页 小韩学长yyds-CSDN博客 目录 引言 一、MacOS 开发环境配置 (一)必备工具安装 (二)集成开发环境(IDE)选…...
如何通过卷积神经网络(CNN)有效地提取图像的局部特征,并在CIFAR-10数据集上实现高精度的分类?
目录 1. CNN 提取图像局部特征的原理 2. 在 CIFAR - 10 数据集上实现高精度分类的步骤 2.1 数据准备 2.2 构建 CNN 模型 2.3 定义损失函数和优化器 2.4 训练模型 2.5 测试模型 3. 提高分类精度的技巧 卷积神经网络(Convolutional Neural Network, CNN&#…...

监听 RabbitMQ 延时交换机的消息数、OpenFeign 路径参数传入斜杠无法正确转义
背景 【MQ】一套为海量消息和高并发热点消息,提供高可用精准延时服务的解决方案 我现在有一个需求,就是监听 RabbitMQ 一个延时交换机的消息数,而 RabbitTemplate 是不存在对应的方法来获取的。 而我们在 RabbitMQ 的控制台却可以发现延时交…...
希音(Shein)前端开发面试题集锦和参考答案
用 Node 写过什么工具或 npm 包 在实际开发中,使用 Node 编写过多种实用工具和 npm 包。 自动化构建工具 开发了一个简单的自动化构建工具,用于处理前端项目的资源压缩和合并。在前端项目中,为了优化性能,需要对 CSS 和 JavaScript 文件进行压缩,减少文件体积,同时将多个…...

python全栈-Linux基础
python全栈-Linux基础 文章目录 Linux安装/配置网络配置配置Linux远程登录配置虚拟机内部ip配置真机的ip安装XShell和Xftp目录结构用户和用户组用户管理添加用户useradd查看用户id修改用户usermod (选项)(参数)用户密码设置passed (选项)(参数)删除用户userdel [选项] 用户名 用…...

DeepSeek R1助力,腾讯AI代码助手解锁音乐创作新
目录 1. DeepSeekR1模型简介2. 歌词创作流程2.1 准备工作2.2 歌词生成技巧 3. 音乐制作环节3.1 主流AI音乐生成平台 4. 歌曲欣赏5. 总结展望 1. DeepSeekR1模型简介 腾讯AI代码助手最新推出的DeepSeekR1模型不仅在代码生成方面表现出色,其强大的自然语言处理能力也…...
Git安装与配置
安装部分: Windows:下载官网安装包,双击安装,路径选择(注意是否修改),安装选项(是否勾选某些选项,如提到安装时更换编辑器为Nano)。Linux:通过包管…...

【Linux】自定协议和序列化与反序列化
目录 一、序列化与反序列化概念 二、自定协议实现一个加法网络计算器 (一)TCP如何保证接收方的接收到数据是完整性呢? (二)自定义协议 (三)自定义协议的实现 1、基础类 2、序列化与反序列…...
C++基础系列【19】运算符重载
博主介绍:程序喵大人 35- 资深C/C/Rust/Android/iOS客户端开发10年大厂工作经验嵌入式/人工智能/自动驾驶/音视频/游戏开发入门级选手《C20高级编程》《C23高级编程》等多本书籍著译者更多原创精品文章,首发gzh,见文末👇…...

Python-04BeautifulSoup网络爬虫
2025-03-04-BeautifulSoup网络爬虫 记录BeautifulSoup网络爬虫的核心知识点 文章目录 2025-03-04-BeautifulSoup网络爬虫 [toc]1-参考网址2-学习要点3-核心知识点1. 安装2. 导入必要的库3. 发送 HTTP 请求4. 创建 BeautifulSoup 对象5. 解析 HTML 内容5.1 查找标签5.2 根据属性…...

芯科科技通过全新并发多协议SoC重新定义智能家居连接
MG26系列SoC现已全面供货,为开发人员提供最高性能和人工智能/机器学习功能 致力于以安全、智能无线连接技术,建立更互联世界的全球领导厂商Silicon Labs(亦称“芯科科技”,NASDAQ:SLAB),日前宣…...

python-leetcode-零钱兑换 II
518. 零钱兑换 II - 力扣(LeetCode) 这个问题是 完全背包问题 的一个变体,可以使用 动态规划 来解决。我们定义 dp[i] 为凑成金额 i 的硬币组合数。 思路: 定义 DP 数组 设 dp[i] 表示凑成金额 i 的组合数,初始化 dp[…...

【RabbitMQ】Producer之TTL过期时间 - 基于AMQP 0-9-1
这篇文章和大家分享Producer发布消息时如何设置消息过期时间,包括队列级别和消息级别,还有如何设置队列的过期时间。 消息过期时间 给消息设置TTL,在超过TTL值后,消息就会变成dead message(死信)…...

演示汉字笔顺的工具
视频需要审核,还是gif比较方便,本来就不长。 给小学生辅导汉字笔顺的时候,先是发现“百度汉语”里面有很多类似的笔顺的动画,非常方便。但总是需要上网,而且百度上并不提供针对特定汉字的方便的检索途径,加…...

JVM简单了解
一、JVM概述 目录 一、JVM概述 1.jvm的作用 2.jvm的组成 2.1类加载 2.1.1加载 2.1.2链接 2.1.3初始化 2.1.4类加载器分类 2.1.5双亲委派机制 2.2运行时数据区 2.2.1程序计数器 2.2.2虚拟机栈 2.2.3本地方法栈 2.2.4java堆内存 2.2.5方法区 2.3本地方法库接口 …...

【CSS—前端快速入门】CSS 选择器
CSS 1. CSS介绍 1.1 什么是CSS? CSS(Cascading Style Sheet),层叠样式表,用于控制页面的样式; CSS 能够对网页中元素位置的排版进行像素级精确控制,实现美化页面的效果;能够做到页面的样式和 结构分离; 1…...

【MYSQL数据库异常处理】执行SQL语句报超时异常
MYSQL执行SQL语句异常:The last packet successfully received from the server was 100,107 milliseconds ago. The last packet sent successfully to the server was 100,101 milliseconds ago. 这个错误表明 MySQL 服务器与 JDBC 连接之间的通信超时了。通常由…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...