无人机端部署 AI 模型,实现实时数据处理和决策
在无人机端部署 AI 模型,实现实时数据处理和决策,是提升无人机智能化水平的关键技术之一。通过将 AI 模型部署到无人机上,可以实现实时目标检测、路径规划、避障等功能。以下是实现这一目标的详细方案和代码示例。
一、实现方案
1. 硬件选择
- 计算平台:
- NVIDIA Jetson 系列:如 Jetson Nano、Jetson Xavier NX,适合边缘计算。
- 高通 Snapdragon Flight:专为无人机设计的高性能计算平台。
- 传感器:
- 摄像头:用于图像采集。
- IMU(惯性测量单元):用于姿态估计。
- 激光雷达或超声波传感器:用于避障。
2. 软件框架
- AI 模型训练:
- 使用 TensorFlow、PyTorch 训练模型。
- 模型优化:
- 使用 TensorRT 或 OpenVINO 优化模型,提高推理速度。
- 部署与推理:
- 使用 TensorFlow Lite、ONNX Runtime 或 NVIDIA TensorRT 在无人机上部署模型。
3. 功能实现
- 实时目标检测:
- 使用 YOLO、SSD 等模型检测目标。
- 路径规划与避障:
- 结合 AI 模型和传感器数据,实现动态路径规划。
- 数据融合:
- 融合摄像头、IMU、激光雷达数据,提高决策精度。
二、代码实现
以下是一个基于 YOLOv5 的实时目标检测和路径规划的代码示例。
1. 安装依赖
# 安装 PyTorch 和 YOLOv5
pip install torch torchvision
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
2. 实时目标检测与路径规划
import cv2
import torch
import numpy as np# 加载 YOLOv5 模型
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')# 初始化摄像头
cap = cv2.VideoCapture(0) # 使用默认摄像头# 路径规划函数
def path_planning(detections):# 假设检测到目标后,无人机需要飞向目标for detection in detections:x1, y1, x2, y2, conf, cls = detectioncenter_x = (x1 + x2) / 2center_y = (y1 + y2) / 2print(f"目标中心坐标: ({center_x}, {center_y})")# 这里可以添加路径规划逻辑,例如飞向目标中心# 例如:计算无人机与目标的相对位置,调整飞行方向# 主循环
while True:# 读取摄像头帧ret, frame = cap.read()if not ret:break# 使用 YOLOv5 进行目标检测results = model(frame)# 解析检测结果detections = results.xyxy[0].cpu().numpy()# 显示检测结果for detection in detections:x1, y1, x2, y2, conf, cls = detectionlabel = f"{model.names[int(cls)]} {conf:.2f}"cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)cv2.putText(frame, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)# 路径规划path_planning(detections)# 显示帧cv2.imshow("YOLOv5 实时目标检测", frame)# 按下 'q' 退出if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源
cap.release()
cv2.destroyAllWindows()
3. 代码说明
目标检测
- 使用 YOLOv5 模型实时检测摄像头画面中的目标。
- 检测结果包括目标类别、置信度和边界框坐标。
路径规划
- 根据检测到的目标中心坐标,计算无人机的飞行方向。
- 可以结合 IMU 和激光雷达数据,实现更复杂的路径规划和避障。
实时显示
- 使用 OpenCV 实时显示摄像头画面和检测结果。
三、优化与扩展
1. 模型优化
- 使用 TensorRT 或 OpenVINO 优化 YOLOv5 模型,提高推理速度。
- 将模型转换为 TensorFlow Lite 格式,部署到嵌入式设备。
2. 多传感器融合
- 结合 IMU 数据,实现无人机的姿态估计。
- 使用激光雷达或超声波传感器,实现避障功能。
3. 动态路径规划
- 使用 A* 或 D* 算法实现动态路径规划。
- 结合目标检测结果,实时调整飞行路径。
4. 云端协同
- 将部分计算任务卸载到云端,减轻无人机端的计算负担。
- 使用 MQTT 或 WebSocket 实现无人机与云端的实时通信。
四、实例应用
1. 农业巡检
- 使用无人机实时检测作物病虫害,规划喷洒路径。
2. 物流配送
- 使用无人机检测目标地点,规划配送路径。
3. 基础设施巡检
- 使用无人机检测桥梁、电力线路等设施的缺陷,规划巡检路径。
五、总结
通过在无人机端部署 AI 模型,可以实现实时数据处理和决策,显著提升无人机的智能化水平。以上代码示例展示了如何利用 YOLOv5 实现实时目标检测和路径规划。如果需要更详细的技术支持或定制化方案,可以进一步探讨!
相关文章:
无人机端部署 AI 模型,实现实时数据处理和决策
在无人机端部署 AI 模型,实现实时数据处理和决策,是提升无人机智能化水平的关键技术之一。通过将 AI 模型部署到无人机上,可以实现实时目标检测、路径规划、避障等功能。以下是实现这一目标的详细方案和代码示例。 一、实现方案 1. 硬件选择…...
CentOS 7中安装Dify
Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。尤其是我们本地部署DeepSeek等大模型时,会需要用到Dify来帮我们快捷的开发和应用。 大家可以参考学习它的中…...
CoDrivingLLM
CoDrivingLLM 思路 1.输入和输出 输入 算法的输入包括车辆当前时刻的状态 S t S_t St ,这个状态包含了车辆的位置、速度、行驶方向等信息;以及参与协同驾驶的联网自动驾驶汽车列表C,用于确定需要进行决策的车辆集合。 输出 输出为车辆…...
Centos7升级openssl和openssh最新版
1、事前准备 下载openssl3.4.1和openssh9.9p2压缩包上传到服务器 https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/portable// Release OpenSSL 3.4.1 openssl/openssl GitHub 2、查看centos7、ssh以及openssl的版本信息 # 查看CentOS系统版本信息 cat /etc/redhat-release …...
相控阵扫盲
下图展示天线增益 在仰角为0度的情况下随着方位角的变化而变化。需要注意到的是在天线视轴方向上的高增益主瓣上还有几个低增益旁瓣 阵列因子乘以新的阵元方向图会形成指向性更强的波速...
nginx 配置 301跳转
HTTP 跳转到 HTTPS 将所有 HTTP 请求(80 端口)跳转到 HTTPS(443 端口): server {listen 80;server_name example.com;# 跳转到 HTTPSreturn 301 https://$host$request_uri; }server {listen 443 ssl;server_name exa…...
开发环境搭建-03.后端环境搭建-使用Git进行版本控制
一.Git进行版本控制 我们对项目开发就会产生很多代码,我们需要有效的将这些代码管理起来,因此我们真正开发代码前需要把我们的Git环境搭建好。通过Git来管理我们项目的版本,进而实现版本控制。 首先我们使用Git创建本地仓库,然后…...
vivado 充分利用 IP 核
充分利用 IP 核 使用预先验证的 IP 核能够大幅减少设计和验证工作量,从而加速产品上市进程。如需了解更多有利用 IP 的信息,请参 阅以下资源: • 《 Vivado Design Suite 用户指南:采用 IP 进行设计》 (UG896) [ 参照 1…...
外盘农产品期货数据:历史高频分钟回测的分享下载20250305
外盘农产品期货数据:历史高频分钟回测的分享下载20250305 在国际期货市场中,历史分钟高频数据的作用不可小觑。这些数据以分钟为时间尺度,详细记录了期货合约的价格变动和交易量信息,为投资者提供了全面、深入的市场分析视角。通…...
计算机毕设-基于springboot的网上商城系统的设计与实现(附源码+lw+ppt+开题报告)
博主介绍:✌多个项目实战经验、多个大型网购商城开发经验、在某机构指导学员上千名、专注于本行业领域✌ 技术范围:Java实战项目、Python实战项目、微信小程序/安卓实战项目、爬虫大数据实战项目、Nodejs实战项目、PHP实战项目、.NET实战项目、Golang实战…...
用DeepSeek-R1-Distill-data-110k蒸馏中文数据集 微调Qwen2.5-7B-Instruct!
下载模型与数据 模型下载: huggingface: Qwen/Qwen2.5-7B-Instruct HF MirrorWe’re on a journey to advance and democratize artificial intelligence through open source and open science.https://hf-mirror.com/Qwen/Qwen2.5-7B-Instruct 魔搭&a…...
【C++设计模式】第四篇:建造者模式(Builder)
注意:复现代码时,确保 VS2022 使用 C17/20 标准以支持现代特性。 分步骤构造复杂对象,实现灵活装配 1. 模式定义与用途 核心目标:将复杂对象的构建过程分离,使得同样的构建步骤可以创建不同的表示形式。 常见场景&am…...
【杂谈】信创电脑华为w515(统信系统)登录锁定及忘记密码处理
华为w515麒麟芯片版,还有非麒麟芯片版本,是一款信创电脑,一般安装的UOS系统。 准备一个空U盘,先下载镜像文件及启动盘制作工具,连接如下: 百度网盘 请输入提取码 http://livecd.uostools.com/img/apps/l…...
VBA信息获取与处理第五节:如何在单个工作表中查找某个给定值
《VBA信息获取与处理》教程(版权10178984)是我推出第六套教程,目前已经是第一版修订了。这套教程定位于最高级,是学完初级,中级后的教程。这部教程给大家讲解的内容有:跨应用程序信息获得、随机信息的利用、电子邮件的发送、VBA互…...
版本控制器Git和gdb
一.版本控制器Git 1.版本控制简单来讲可以对每一份代码版本进行复制保存,保证每一版代码都可查 2.仓库的本质也是一个文件夹 3.git既是一个客户端,也是一个服务器,是一个版本控制器。而gitee和GitHub都是基于git的网站或平台 4.git的基本…...
关于tresos Studio(EB)的MCAL配置之GPT
概念 GPT,全称General Purpose Timer,就是个通用定时器,取的名字奇怪了点。定时器是一定要的,要么提供给BSW去使用,要么提供给OS去使用。 配置 General GptDeinitApi控制接口Gpt_DeInit是否启用 GptEnableDisable…...
大学至今的反思与总结
现在是2025年的3月5日,我大三下学期。 自大学伊始,我便以考研作为自己的目标,有时还会做自己考研上岸头部985,211,offer如潮水般涌来的美梦。 但是我却忽略了一点,即便我早早下定了决心去考研,但并没有早…...
我们来学nginx -- 优化下游响应速度
优化下游响应速度 题记启用 Gzip 压缩优化缓冲区设置设置超时时间 题记 专家给出的配置文件真是…,信息量有点大啊! nginx:我只想作为一个简单的代理专家爸爸:都是为了你好! 这样,先从有关响应速度的角度&…...
国内外优秀AI外呼产品推荐
在数字化转型浪潮中,AI外呼系统凭借其高效率、低成本、精准交互的特点,成为企业客户触达与服务的核心工具。本文基于行业实践与技术测评,推荐国内外表现突出的AI外呼产品,重点解析国内标杆企业云蝠智能,并对比其他代表…...
观察者模式的C++实现示例
核心思想 观察者模式是一种行为型设计模式,定义了对象之间的一对多依赖关系。当一个对象(称为Subject,主题)的状态发生改变时,所有依赖于它的对象(称为Observer,观察者)都会自动收到…...
使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
