当前位置: 首页 > news >正文

题目 3217 ⭐成绩统计⭐【滑动窗口 + 二分搜索】蓝桥杯2024年第十五届省赛

小蓝的班上有 n n n 个人,一次考试之后小蓝想统计同学们的成绩,第 i 名同学的成绩为 a i a_i ai 。当小蓝统计完前 x x x 名同学的成绩后,他可以从 1 ∼ x 1 ∼ x 1x 中选出任意 k k k 名同学的成绩,计算出这 k k k 个成绩的方差。小蓝至少要检查多少个人的成绩,才有可能选出 k k k 名同学,他们的方差小于一个给定的值 T T T

提示: k k k 个数 v 1 , v 2 , ⋯ , v k v_1, v_2, \cdots, v_k v1,v2,,vk 的方差 σ 2 σ^2 σ2 定义为: σ 2 = ∑ k i = 1 ( v i − v ′ ) / k σ^2=∑ k_i=1(v_i−v')/k σ2=ki=1(viv)/k ,其中 v ′ v' v 表示 v v v 的平均值, v ′ = ∑ k i = 1 v i k v'=∑k_{i=1} \frac{v_i}{k} v=ki=1kvi

关键点

  1. 问题目标:找到最小的 x x x,使得在前 x x x 名同学的成绩中,存在一个大小为 k k k 的子集,其方差小于 T T T

  2. 方差的含义

    • 方差越小,说明数据越集中。
    • 如果选择的 k k k 个数非常接近,方差会很小。
  3. 解决思路

    • 对前 x x x 名同学的成绩排序。
    • 使用 滑动窗口 检查所有连续的 k k k 个数的方差是否小于 T T T
    • 通过 二分搜索 找到最小的 x x x
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;// 计算 k 个数的方差
double calculateVariance(const vector<int>& nums, int start, int k) {double sum = 0;for (int i = start; i < start + k; i++) {sum += nums[i];}double mean = sum / k; // 平均值double variance = 0;for (int i = start; i < start + k; i++) {variance += (nums[i] - mean) * (nums[i] - mean);}return variance / k;
}// 检查前 x 个数中是否存在 k 个数的方差小于 T
bool check(const vector<int>& a, int x, int k, double T) {vector<int> subset(a.begin(), a.begin() + x); // 取前 x 个数sort(subset.begin(), subset.end()); // 排序for (int i = 0; i <= x - k; i++) { // 滑动窗口double variance = calculateVariance(subset, i, k);if (variance < T) {return true;}}return false;
}// 二分搜索找到最小的 x
int findMinX(const vector<int>& a, int k, double T) {int n = a.size();int left = k, right = n; // x 的最小值是 k,最大值是 nint result = n + 1; // 初始化为一个不可能的值while (left <= right) {int mid = left + (right - left) / 2;if (check(a, mid, k, T)) {result = mid; // 更新结果right = mid - 1; // 尝试更小的 x} else {left = mid + 1; // 尝试更大的 x}}return result <= n ? result : -1; // 如果找到返回 x,否则返回 -1
}

复杂度分析

  • 时间复杂度:

    • 排序: O ( x l o g x ) O(x\ log\ x) O(x log x),其中 x x x 是检查的人数
    • 滑动窗口检查方差: O ( x ) O(x) O(x)
    • 二分搜索: O ( l o g n ) O(log\ n) O(log n)
    • 总复杂度 O ( n l o g n ⋅ l o g n ) O(nlog\ n⋅logn) O(nlog nlogn)
  • 空间复杂度:

    • 存储子集: O ( n ) O(n) O(n)

总结

  • 通过排序和滑动窗口,可以高效地检查是否存在满足条件的子集。
  • 二分搜索用于快速找到最小的 x x x
  • 该方法在时间和空间复杂度上都是可行的,适用于中等规模的数据。

相关文章:

题目 3217 ⭐成绩统计⭐【滑动窗口 + 二分搜索】蓝桥杯2024年第十五届省赛

小蓝的班上有 n n n 个人&#xff0c;一次考试之后小蓝想统计同学们的成绩&#xff0c;第 i 名同学的成绩为 a i a_i ai​ 。当小蓝统计完前 x x x 名同学的成绩后&#xff0c;他可以从 1 ∼ x 1 ∼ x 1∼x 中选出任意 k k k 名同学的成绩&#xff0c;计算出这 k k k 个成…...

URL中的特殊字符与web安全

在现代Web应用中&#xff0c;URL作为客户端与服务器之间的通信桥梁&#xff0c;承载着大量的重要信息。URL中的特殊字符&#xff0c;看似只是一些常见的符号&#xff0c;但在Web安全领域&#xff0c;它们与其他安全知识密切相关&#xff0c;如在Base64编码、SQL注入&#xff0c…...

八卡5090服务器首发亮相!

AI 人工智能领域热度居高不下。OpenAI 的 GPT - 4 凭强悍语言处理能力&#xff0c;在内容创作、智能客服等领域广泛应用。清华大学团队的 DeepSeek 大模型在深度学习训练优势突出&#xff0c;正促使各行业应用端算力需求向推理主导转变&#xff0c;呈爆发式增长 。 随着 DeepS…...

esp32驱动带字库芯片TFT屏幕

前言 学习esp32单片机开发&#xff0c;前段时间在网上买了一块2.0寸TFT屏幕。 长这个样子&#xff0c;这个屏幕带汉字字库的硬件模块。我仔细看了一下这个字库模块上面写的字是25Q32FVSIG 1336 文档 卖家也发来了开发文档&#xff0c;是个doc文档&#xff0c;张这个样子。 开…...

为AI聊天工具添加一个知识系统 之138 设计重审 之2 文章学 引言之2 附加符号学附属诠释学附随工程学(联系)

本文要点 要点 符号学大局观&#xff1a; 诠释学&#xff08;当代 加成[0]&#xff1a;“预期”和“预设” 两者的 不期而遇 。“邂逅”&#xff09; 我们在文章学工具设计中 以全局观考虑&#xff1a;嵌入编程工具的逻辑性底&#xff08; 哲学诠释 下确界&#xff09; 并…...

java环境部署

java环境部署 一、准备工作 jrejdkeclipse jdk下载&#xff1a;21和1.8-----官网&#xff1a;Oracle&#xff1a;Java 下载 |神谕 该处选择要依据自身的系统类型选择下载 idea的下载安装&#xff1a;IntelliJ IDEA | Other Versions 二、安装 三、环境配置 四、使用 五、i…...

正点原子[第三期]Arm(iMX6U)Linux移植学习笔记-2.1 uboot简介

前言&#xff1a; 本文是根据哔哩哔哩网站上“Arm(iMX6U)Linux系统移植和根文件系统构键篇”视频的学习笔记&#xff0c;在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。 引用&#xff1a; …...

CentOS 7.9 安装 ClickHouse 文档

1. 环境准备 确保系统为 CentOS 7.9&#xff0c;并已安装 Docker。如果未安装 Docker&#xff0c;请先安装 Docker。 安装 Docker # 卸载旧版本 Docker&#xff08;如果有&#xff09; sudo yum remove -y docker docker-client docker-client-latest docker-common docker-…...

高考數學。。。

2024上 具体来说&#xff0c;直线的参数方程可以写为&#xff1a; x1t y−t z1t 二、简答题(本大题共5小题&#xff0c;每小题7分&#xff0c;共35分。) 12.数学学习评价不仅要关注结果评价&#xff0c;也要关注过程评价。简要说明过程评价应关注哪几个方面。…...

使用GitLink个人建站服务部署Allure在线测试报告

更多技术文章&#xff0c;访问软件测试社区 文章目录 &#x1f680;前言&#x1f511;开通GitLink个人建站服务1. 前提条件2. 登录GitLink平台&#xff08;https://www.gitlink.org.cn/login&#xff09;3. 进入设置>个人建站>我的站点4. 新建站点5. 去仓部进行部署6. 安…...

Linux 上离线安装 python3

在Linux系统上进行离线安装 Python3&#xff0c;通常是因为目标机器没有网络连接。以下是一个通用的步骤指南&#xff0c;帮助你在这种情况下成功安装Python 3&#xff1a; 下载安装包 选择一台有网络连接的机器&#xff1a;这台机器的操作系统应该尽可能与目标机器相同或相似…...

js操作字符串的常用方法

1. 查找和截取​​​​​​​ 1.1 indexOf 作用&#xff1a;查找子字符串在字符串中首次出现的位置。 是否改变原字符串&#xff1a;不会改变原字符串。 返回值&#xff1a;如果找到子字符串&#xff0c;返回其起始索引&#xff08;从 0 开始&#xff09;&#xff1b;如果未…...

自动化学习-使用git进行版本管理

目录 一、为什么要学习git 二、git是什么 三、git如何使用 1、git的下载安装和配置 2、git常用的命令 3、gitee远程仓库的使用 &#xff08;1&#xff09;注册 &#xff08;2&#xff09;创建仓库 &#xff08;3&#xff09;配置公钥&#xff08;建立电脑和git…...

GCC RISCV 后端 -- GCC Passes 注释

在前面文章提到&#xff0c;当GCC 前端完成对C源代码解析完成后&#xff0c;就会使用 处理过程&#xff08;Passes&#xff09;机制&#xff0c;通过一系列的处理过程&#xff0c;将 GENERIC IR 表示的C程序 转步转换成 目标机器的汇编语言。过程描述如下图所示&#xff1a; 此…...

Ollama存在安全风险的情况通报及解决方案

据清华大学网络空间测绘联合研究中心分析&#xff0c;开源跨平台大模型工具Ollama默认配置存在未授权访问与模型窃取等安全隐患。鉴于目前DeepSeek等大模型的研究部署和应用非常广泛&#xff0c;多数用户使用Ollama私有化部署且未修改默认配置&#xff0c;存在数据泄露、算力盗…...

IDEA Generate POJOs.groovy 踩坑小计 | 生成实体 |groovy报错

一、无法生成注释或生成的注释是null 问题可能的原因&#xff1a; 1.没有从表里提取注释信息&#xff0c;修改def calcFields(table)方法即可 def calcFields(table) {DasUtil.getColumns(table).reduce([]) { fields, col ->def spec Case.LOWER.apply(col.getDataType().…...

阿里云云监控资源告警常用模板

阿里云云监控资源告警常用模板 {"HostAvailabilityTemplate": [],"Description": "","SystemEventTemplates": [],"AlertTemplatesJson": {"kvstore_standard": [{"displayName": "Connection usa…...

Tailwind CSS 问题:npm error could not determine executable to run

问题与处理策略 问题描述 npx tailwindcss init -p在使用 Tailwind CSS 的前端项目中&#xff0c;执行上述指令&#xff0c;即初始化 Tailwind CSS 时&#xff0c;报如下错误 npm error could not determine executable to run# 报错npm 错误无法确定要运行的可执行文件问题…...

vue基本功

watchEffect和watch watchEffect默认 immdiate 是 true,而且自动收集依赖 watch需要手动写依赖,immdiate 默认是 false toRef和toRefs toRef: 复制 reactive 里的单个属性并转成 ref toRefs: 复制 reactive 里的所有属性并转成 ref vue3中使用vuex import { useStore } f…...

.NET10 - 预览版1新功能体验(一)

.NET 10 首个预览版已经在前两天发布&#xff0c;该版本在 .NET Runtime、SDK、libraries、C#、ASP.NET Core、Blazor 和 .NET MAUI 等多个方面都有重大改进和增强。其中C# 14 预览版也伴随着.NET 10预览版一起发布了&#xff0c;今天就和大家一起体验一下.NET 10 和 C# 14 。 …...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...