当前位置: 首页 > news >正文

实验一:在Windows 10/11下配置和管理TCP/IP

目录

1.【实训目标】

2.【实训环境】

3.【实训内容】

4.【实训步骤】


1.【实训目标】

1.了解网络基本配置中包含的协议、服务、客户端。

2.了解Windows支持的网络协议及参数设置方法。

3.掌握TCP/IP协议的配置。

2.【实训环境】

硬件环境:每人一台计算机,能够接入Internet的局域网络。

3.【实训内容】

公司给新来的领导配备了一台新电脑,需要配置相应的IP地址才能上网,领导让你过去帮忙配置一下。配置过程中,查看所在机器的主机名称和网络属性,了解网络基本配置中包含的协议、服务、客户端等信息,完成TCP/IP协议的参数配置,使用新电脑能正常上网。

4.【实训步骤】

1.打开“开始”→“设置” →“网络和Internet” →“以太网” →“网络和共享中心”如图2-14所示。也可以通过Windows10桌面右下角通知栏里的网络图标或右键单击桌面“网上邻居”打开“网络和共享中心”。

2.在“网络和共享中心”窗口中单击“以太网”,打开“以太网状态”窗口。如图2-15所示。单击“属性”按钮,打开如图2-16所示“以太网属性”窗口。通过“以太网属性”窗口,了解网络基本配置中包含的协议、服务、客户端等信息。

3.在“以太网属性”窗口中,选择“Internet协议版本4(TCP/IPv4)”,然后单击“属性”按钮,打开“Internet协议版本4(TCP/IPv4)属性”窗口。选中“使用下面的IP地址(S)”及“使用下面的DNS服务器地址(E)”单选按钮,在IP地址栏里输入管理员分配的IP地址及相关参数,单击“确定”按钮即可,如图2-17所示。

相关文章:

实验一:在Windows 10/11下配置和管理TCP/IP

目录 1.【实训目标】 2.【实训环境】 3.【实训内容】 4.【实训步骤】 1.【实训目标】 1.了解网络基本配置中包含的协议、服务、客户端。 2.了解Windows支持的网络协议及参数设置方法。 3.掌握TCP/IP协议的配置。 2.【实训环境】 硬件环境:每人一台计算机&a…...

基于hive的电信离线用户的行为分析系统

标题:基于hive的电信离线用户的行为分析系统 内容:1.摘要 随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于 Hive 的电信离线用户行为分析系统。通…...

Rust WebAssembly 入门教程

一、开发环境搭建 1. 基础工具安装 # 安装 Rust curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh# 安装 wasm-pack cargo install wasm-pack# 安装开发服务器 cargo install basic-http-server# 安装文件监听工具 cargo install cargo-watch2. VSCode 插件安装…...

部署RabbitMQ集群详细教程

部署RabbitMQ集群详细教程 下面是一份在 Ubuntu 环境下部署 RabbitMQ 集群的详细步骤说明,涉及主机名设置、Erlang & RabbitMQ 安装、管理插件启用、集群通信 Cookie 配置、节点加入集群、镜像队列策略设置以及集群验证等。为了演示方便,以下示例假…...

20250306JIRA添加企业微信邮箱通知

文章目录 一,参考链接如下二,补充内容1,登录企业邮箱2,设置密码3,设置收发信设置 一,参考链接如下 参考链接:https://blog.csdn.net/icett/article/details/142520823 二,补充内容…...

代码随想录算法训练营第五十七天 | 101. 孤岛的总面积 102. 沉没孤岛 103. 水流问题 104.建造最大岛屿

101. 孤岛的总面积 题目链接:KamaCoder 文档讲解:代码随想录 状态:AC Java代码: import java.util.*;class Main {static int count 0;static int res 0;static boolean island true;public static int[][] dir new int[][]{…...

llamafactory大模型微调教程(周易大模型案例)

1.环境说明 操作系统:ubuntu 20 基础模型:Qwen2.5-1.5B-Instruct 工具:llamafactory GPU:四张4090 2、环境部署 2.1 下载基础模型 # 1、下载 modelscope pip install modelscope#2、模型下载 cd /data/ cat >> download…...

excel 斜向拆分单元格

右键-合并单元格 右键-设置单元格格式-边框 在设置好分割线后,你可以开始输入文字。 需要注意的是,文字并不会自动分成上下两行。 为了达到你期望的效果,你可以通过 同过左对齐、上对齐 空格键或使用【AltEnter】组合键来调整单元格中内容的…...

【JAVA架构师成长之路】【JVM实战】第2集:生产环境内存飙高排查实战

课程标题:生产环境内存飙高排查实战——从堆转储到代码修复的15分钟指南 目标:掌握内存泄漏与OOM问题的系统性排查方法,快速定位代码或配置缺陷 0-1分钟:问题引入与核心现象 线上服务内存持续增长,触发频繁Full GC甚至OOM(OutOfMemoryError),导致服务崩溃。常见诱因:…...

MATLAB实现遗传算法优化风电_光伏_光热_储热优化

1. 问题定义 目标:最小化输出负荷与需求负荷的偏差平方和。决策变量:每个时间步长的风电、光伏、光热和储热输出功率。约束条件: 风电、光伏、光热的输出功率不得超过其最大容量。储热系统的输出功率(充放电)不得超过…...

JCRQ1河马算法+四模型对比!HO-CNN-GRU-Attention系列四模型多变量时序预测

JCRQ1河马算法四模型对比!HO-CNN-GRU-Attention系列四模型多变量时序预测 目录 JCRQ1河马算法四模型对比!HO-CNN-GRU-Attention系列四模型多变量时序预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基于HO-CNN-GRU-Attention、CNN-GRU-Attent…...

react中的fiber和初次渲染

源码中定义了不同类型节点的枚举值 组件类型 文本节点HTML标签节点函数组件类组件等等 src/react/packages/react-reconciler/src/ReactWorkTags.js export const FunctionComponent 0; export const ClassComponent 1; export const IndeterminateComponent 2; // Befo…...

LLM 大模型基础认知篇

目录 1、基本概述 2、大模型工作原理 3、关键知识点 (1)RAG 知识库 (2)蒸馏 (3)微调 (4)智能体 1、基本概述 大型语言模型(Large Language Model, LLM&#xff09…...

leetcode700-二叉搜索树中的搜索

leetcode 700 思路 我们需要先了解一下二叉搜索树的特性&#xff1a; 左子树的所有节点值 < 当前节点的值。右子树的所有节点值 > 当前节点的值。这个特性适用于树中的每个节点 那么根据这个特性&#xff0c;我们可以通过根节点的值和目标值的大小来判断后序的走向&…...

《MySQL三大核心日志解析:Undo Log/Redo Log/Bin Log对比与实践指南》

MySQL三大核心日志解析&#xff1a;Undo Log/Redo Log/Bin Log对比与实践指南 一、核心日志全景概览 在MySQL数据库体系中&#xff0c;Undo Log、Redo Log和Bin Log构成了事务处理和数据安全的三大基石。这三大日志各司其职&#xff0c;协同保障了数据库的ACID特性与高可用架…...

java中实体类常见的设计模式

实体类常见的设计模式 1. Set 链式编程 在实体类中实现链式调用通常是指让 setter 方法返回当前对象实例&#xff08;this&#xff09;&#xff0c;从而允许连续调用多个 setter 方法设置属性值。这种方式可以使代码更加简洁和直观。 例如实体类为&#xff1a; public clas…...

【够用就好006】如何从零开发游戏上架steam面向AI编程的godot独立游戏制作实录001流程

记录工作实践 这是全新的系列&#xff0c;一直有个游戏制作梦 感谢AI时代&#xff0c;让这一切变得可行 长欢迎共同见证&#xff0c;期更新&#xff0c;欢迎保持关注&#xff0c;待到游戏上架那一天&#xff0c;一起玩 面向AI编程的godot独立游戏制作流程实录001 本期是第…...

发行思考:全球热销榜的频繁变动

几点杂感&#xff1a; 1、单机游戏销量与在线人数的衰退是剧烈的&#xff0c;有明显的周期性&#xff0c;而在线游戏则稳定很多。 如去年的某明星游戏&#xff0c;最高200多万在线&#xff0c;如今在线人数是48名&#xff0c;3万多。 而近期热门的是MH&#xff0c;在线人数8…...

docker目录挂载与卷映射的区别

在 Docker 中&#xff0c;目录挂载&#xff08;Bind Mount&#xff09;和卷映射&#xff08;Volume Mount&#xff09;的命令语法差异主要体现在路径格式上&#xff0c;具体表现为是否以斜杠&#xff08;/&#xff09;开头。以下是两者的核心区别及使用场景的总结&#xff1a; …...

`label` 标签的 `for` 属性详解

一、基本概念 label 标签的 for 属性用于将标签与表单控件&#xff08;如 input、select 等&#xff09;绑定&#xff0c;其值需与目标元素的 id 完全匹配。这种关联允许用户点击标签时触发控件交互&#xff08;如聚焦输入框或切换复选框&#xff09;&#xff0c;提升操作便捷…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

SpringCloud优势

目录 完善的微服务支持 高可用性和容错性 灵活的配置管理 强大的服务网关 分布式追踪能力 丰富的社区生态 易于与其他技术栈集成 完善的微服务支持 Spring Cloud 提供了一整套工具和组件来支持微服务架构的开发,包括服务注册与发现、负载均衡、断路器、配置管理等功能…...

【Pandas】pandas DataFrame dropna

Pandas2.2 DataFrame Missing data handling 方法描述DataFrame.fillna([value, method, axis, …])用于填充 DataFrame 中的缺失值&#xff08;NaN&#xff09;DataFrame.backfill(*[, axis, inplace, …])用于**使用后向填充&#xff08;即“下一个有效观测值”&#xff09…...

机器学习复习3--模型评估

误差与过拟合 我们将学习器对样本的实际预测结果与样本的真实值之间的差异称为&#xff1a;误差&#xff08;error&#xff09;。 误差定义&#xff1a; ①在训练集上的误差称为训练误差&#xff08;training error&#xff09;或经验误差&#xff08;empirical error&#x…...