当前位置: 首页 > news >正文

一个针对煤炭市场的人工智能项目的开发示例

以下是一个针对煤炭市场的人工智能项目的开发示例,此项目将涵盖数据收集、数据预处理、模型构建、模型训练和预测等步骤。这里我们以预测煤炭价格为例,使用 Python 语言结合常见的机器学习库(如pandasscikit - learn)来完成。

1. 项目概述

本项目旨在通过分析历史煤炭市场数据,构建一个机器学习模型来预测未来的煤炭价格。

2. 环境准备

确保你已经安装了以下 Python 库:

pip install pandas numpy scikit-learn matplotlib

3. 代码实现

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt# 步骤 1: 数据收集
# 假设我们有一个包含煤炭市场数据的 CSV 文件,文件名为 'coal_market_data.csv'
# 数据包含特征列(如煤炭产量、需求量等)和目标列(煤炭价格)
data = pd.read_csv('coal_market_data.csv')# 步骤 2: 数据预处理
# 检查数据是否有缺失值
if data.isnull().any().any():data = data.dropna()  # 删除包含缺失值的行# 分离特征和目标变量
X = data.drop('coal_price', axis=1)  # 特征列
y = data['coal_price']  # 目标列# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 步骤 3: 模型构建
# 使用线性回归模型
model = LinearRegression()# 步骤 4: 模型训练
model.fit(X_train, y_train)# 步骤 5: 模型预测
y_pred = model.predict(X_test)# 步骤 6: 模型评估
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print(f"均方误差 (MSE): {mse}")
print(f"均方根误差 (RMSE): {rmse}")# 步骤 7: 可视化结果
plt.scatter(y_test, y_pred)
plt.xlabel('实际煤炭价格')
plt.ylabel('预测煤炭价格')
plt.title('实际价格 vs 预测价格')
plt.show()

4. 代码解释

  1. 数据收集:使用pandas库的read_csv函数读取包含煤炭市场数据的 CSV 文件。
  2. 数据预处理:检查数据中是否存在缺失值,如果有则删除包含缺失值的行。然后将特征列和目标列分离,并使用train_test_split函数将数据划分为训练集和测试集。
  3. 模型构建:选择线性回归模型作为预测模型。
  4. 模型训练:使用训练集数据对模型进行训练。
  5. 模型预测:使用训练好的模型对测试集数据进行预测。
  6. 模型评估:计算预测结果的均方误差(MSE)和均方根误差(RMSE),以评估模型的性能。
  7. 可视化结果:使用matplotlib库绘制实际价格和预测价格的散点图,直观展示模型的预测效果。

5. 注意事项

  • 实际应用中,你需要根据具体情况收集和处理真实的煤炭市场数据。
  • 线性回归模型可能不是最适合的模型,你可以尝试其他更复杂的模型,如决策树、随机森林、神经网络等。
  • 可以进一步进行特征工程,如特征选择、特征缩放等,以提高模型的性能。

相关文章:

一个针对煤炭市场的人工智能项目的开发示例

以下是一个针对煤炭市场的人工智能项目的开发示例,此项目将涵盖数据收集、数据预处理、模型构建、模型训练和预测等步骤。这里我们以预测煤炭价格为例,使用 Python 语言结合常见的机器学习库(如pandas、scikit - learn)来完成。 …...

QILSTE H6-S115FOKYG高亮橙光和黄绿光LED灯珠

型号:H6-S115FOKYG --- 在众多电子元件中,H6-S115FOKYG型号的LED以其独特的性能脱颖而出。这款产品采用了高亮橙光和黄绿光两种颜色,尺寸仅为1.6x1.5x0.55mm,却蕴含着强大的光电性能。其透明平面胶体设计,不仅美观&a…...

EasyDSS视频推拉流/直播点播平台:Mysql数据库接口报错502处理方法

视频推拉流/视频直播点播EasyDSS互联网直播平台支持一站式的上传、转码、直播、回放、嵌入、分享功能,具有多屏播放、自由组合、接口丰富等特点。平台可以为用户提供专业、稳定的直播推流、转码、分发和播放服务,全面满足超低延迟、超高画质、超大并发访…...

测试直播postman+Jenkins所学

接口自动化 什么是接口?本质上就是一个url,用于提供数据。后台程序提供一种数据地址,接口的数据一般是从数据库中查出来的。 postman自动化实操: 一般来说公司会给接口文档,如果没有,通过拦截&#xff0c…...

上线DeepSeek大模型,黄山“大位”智算中心正式点亮

2月28日,智启黄山,算领未来——黄山“大位”智算中心点亮仪式在黄山市大位人工智能计算中心举行,标志着黄山“大位”智算中心正式投入运营。同日,DeepSeek-R1大模型在黄山“大位”正式上线,通过“顶尖大模型普惠算力底…...

计算机毕业设计SpringBoot+Vue.js医院药品管理系统(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

Linux安装nvm和node

执行curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.4/install.sh | bash命令下载安装nvm 执行 source ~/.bashrc命令重新加载shell配置文件以使NVM生效 执行nvm ls-remote 查看可用node版本 如果确定版本,可以直接执行npm install 版本号&#xff0…...

HarmonyOS Next元服务网络请求封装实践

【HarmonyOS Next实战】元服务网络通信涅槃:深度封装如何实现80%性能跃升与零异常突破 ————从架构设计到工程落地的全链路优化指南 一、架构设计全景 1.1 分层架构模型 #mermaid-svg-VOia4RMx7iqmLnu7 {font-family:"trebuchet ms",verdana,arial,…...

网络编程-----服务器(多路复用IO 和 TCP并发模型)

一、单循环服务器模型 1. 核心特征 while(1){newfd accept();recv();close(newfd);}2. 典型应用场景 HTTP短连接服务&#xff08;早期Apache&#xff09;CGI快速处理简单测试服务器 3. 综合代码 #include <stdio.h> #include <sys/types.h> /* See NO…...

PostgreSQL 数据库专家可从事以的工作

数据库管理员&#xff08;DBA&#xff09; 职责 负责 PostgreSQL 数据库的日常管理和维护&#xff0c;包括安装、配置、升级数据库系统&#xff0c;确保数据库的稳定运行。 进行数据库性能调优&#xff0c;通过调整数据库参数、优化查询语句等方式&#xff0c;提高数据库的响应…...

如何学习编程?

如何学习编程&#xff1f; 笔记来源&#xff1a;How To Study Programming The Lazy Way 声明&#xff1a;该博客内容来自链接&#xff0c;仅作为学习参考 写在前面的话&#xff1a; 大多数人关注的是编程语言本身&#xff0c;而不是解决问题和逻辑思维。不要试图记住语言本身…...

策略模式详解:实现灵活多样的支付方式

多支付方式的实现&#xff1a;策略模式详解 策略模式&#xff08;Strategy Pattern&#xff09;是一种行为设计模式&#xff0c;它定义了一系列算法&#xff0c;并将每个算法封装起来&#xff0c;使它们可以互换使用。策略模式使得算法可以独立于使用它的客户端变化。本文将通…...

SQL根据分隔符折分不同的内容放到临时表

SQL Server存储过程里根据分隔符折分不同的内容放到临时表里做查询条件&#xff0c;以下分隔符使用“/”&#xff0c;可修改不同分隔符 --根据分隔符折分不同的内容放到临时表--------------- SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS id, LTRIM(RTR…...

微信小程序引入vant-weapp组件教程

本章教程,介绍如何在微信小程序中引入vant-weapp。 vant-weapp文档:https://vant-ui.github.io/vant-weapp/#/button 一、新建一个小程序 二、npm初始化 npm init三、安装 Vant Weapp‘ npm i @vant/weapp -...

从零到多页复用:我的WPF MVVM国际化实践

文章目录 第一步&#xff1a;基础实现&#xff0c;资源文件入门第二步&#xff1a;依赖属性&#xff0c;提升WPF体验第三步&#xff1a;多页面复用&#xff0c;减少重复代码第四步&#xff1a;动态化&#xff0c;应对更多字符串总结与反思 作为一名WPF开发者&#xff0c;我最近…...

uniapp 常用 UI 组件库

1. uView UI 特点&#xff1a; 组件丰富&#xff1a;提供覆盖按钮、表单、图标、表格、导航、图表等场景的内置组件。跨平台支持&#xff1a;兼容 App、H5、小程序等多端。高度可定制&#xff1a;支持主题定制&#xff0c;组件样式灵活。实用工具类&#xff1a;提供时间、数组操…...

C++编写Redis客户端

目录 安装redis-plus-plus库 ​编辑 编译Credis客户端 redis的通用命令使用 get/set exists del keys expire /ttl type string类型核心操作 set和get set带有超时时间 set带有NX string带有XX mset mget getrange和setrange incr和decr list类型核心操作…...

基于大模型预测的急性横贯性脊髓炎诊疗方案研究报告

目录 一、引言 1.1 研究背景与意义 1.2 研究目的与方法 1.3 国内外研究现状 二、急性横贯性脊髓炎概述 2.1 疾病定义与分类 2.2 病因与发病机制 2.3 临床表现与诊断标准 三、大模型在急性横贯性脊髓炎预测中的应用 3.1 大模型介绍与原理 3.2 数据收集与预处理 3.3 …...

nature genetics | SCENT:单细胞多模态数据揭示组织特异性增强子基因图谱,并可识别致病等位基因

–https://doi.org/10.1038/s41588-024-01682-1 Tissue-specific enhancer–gene maps from multimodal single-cell data identify causal disease alleles 研究团队和单位 Alkes L. Price–Broad Institute of MIT and Harvard Soumya Raychaudhuri–Harvard Medical S…...

【C语言】指针篇

目录 C 语言指针概述指针的声明和初始化声明指针初始化指针指针的操作解引用操作指针算术运算指针的用途动态内存分配作为函数参数指针与数组数组名作为指针通过指针访问数组元素指针算术和数组数组作为函数参数指针数组和数组指针指针数组数组指针函数指针函数指针的定义和声明…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】&#xff0c;这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...

基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究

摘要&#xff1a;在消费市场竞争日益激烈的当下&#xff0c;传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序&#xff0c;探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式&#xff0c;分析沉浸式体验的优势与价值…...