当前位置: 首页 > news >正文

12.【线性代数】——图和网络

g r a p h = { n o d e s , e d g e s } graph=\{nodes, edges\} graph={nodes,edges}

1
3
2
4
5
node1
node2
node3
node4

上图中,有4个节点(node),5条边(edge),图上的各个数字为标号。

1.关联矩阵

A = [ − 1 1 0 0 0 − 1 1 0 − 1 0 1 0 − 1 0 0 1 0 0 − 1 1 ] ⏟ [ n o d e 1 , n o d e 2 , n o d e 3 , n o d e 4 ] A=\underbrace{\begin{bmatrix} -1&1&0&0\\ 0&-1&1&0\\ -1&0&1&0\\ -1&0&0&1\\ 0&0&-1&1 \end{bmatrix}}_{[node1, node2,node3,node4]} A=[node1,node2,node3,node4] 10110110000110100011
每一行表示一条边,-1表示开始的节点,1表示结束的节点。第一行表示 e d g e 1 edge_1 edge1
e d g e 1 edge_1 edge1 e d g e 2 edge_2 edge2 e d g e 3 edge_3 edge3现象相关,存在回路( e d g e 1 + e d g e 2 = e d g e 3 edge_1+edge_2=edge_3 edge1+edge2=edge3)。

树:没有回路的图

把图看做是电流图。每一个节点表示电势。两个节点的电势差,形成电流。

2. A A A矩阵的零空间,求解 A x = 0 Ax=0 Ax=0 电势

A [ x 1 x 2 x 3 x 4 ] = [ x 2 − x 1 x 3 − x 2 x 3 − x 1 x 4 − x 1 x 4 − x 3 ] = [ 0 0 0 0 0 ] A \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = \begin{bmatrix} x_2-x_1\\ x_3-x_2\\ x_3-x_1\\ x_4-x_1\\ x_4-x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} A x1x2x3x4 = x2x1x3x2x3x1x4x1x4x3 = 00000
解得:
x = c [ 1 1 1 1 ] x = c\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} x=c 1111

d i m ( N ( A ) ) = 1 , 那么 r a n k A = n − 1 = # n o d e s − 1 dim(N(A)) = 1, 那么rankA = n - 1 = \#nodes - 1 dim(N(A))=1,那么rankA=n1=#nodes1

3. A T A^T AT矩阵的零空间,电流

A T y = [ − 1 0 − 1 − 1 0 1 − 1 0 0 0 0 1 1 0 − 1 0 0 0 1 1 ] [ y 1 y 2 y 3 y 4 y 5 ] = [ 0 0 0 0 ] A^Ty=\begin{bmatrix} -1&0&-1&-1&0\\ 1&-1&0&0&0\\ 0&1&1&0&-1\\ 0&0&0&1&1 \end{bmatrix}\begin{bmatrix} y_1\\ y_2\\ y_3\\ y_4\\ y_5\\ \end{bmatrix} =\begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} ATy= 11000110101010010011 y1y2y3y4y5 = 0000
得出:
{ − y 1 − y 3 − y 4 = 0 ( 合流 = 0 ) y 1 − y 2 = 0 ( 流入 = 流出 ) y 2 + y 3 − y 5 = 0 ( 流入 = 流出 ) y 4 + y 5 = 0 ( 合流 = 0 ) ⇒ y = c [ 1 1 − 1 0 0 ] + d [ 0 0 1 − 1 1 ] ( 两个基为图中的回路 # l o o p ) \begin{cases} -y_1 -y_3 -y_4 =0 (合流=0) \\ y_1-y_2=0 (流入=流出) \\ y_2+y_3-y_5=0(流入=流出) \\ y_4+y_5=0 (合流=0) \end{cases}\xRightarrow{} y= c\begin{bmatrix} 1\\1\\-1\\0\\0 \end{bmatrix} + d\begin{bmatrix} 0\\ 0\\ 1\\ -1\\1 \end{bmatrix} (两个基为图中的回路\#loop) y1y3y4=0(合流=0)y1y2=0(流入=流出)y2+y3y5=0(流入=流出)y4+y5=0(合流=0) y=c 11100 +d 00111 (两个基为图中的回路#loop)

KCL定律: a. 合流 = 0 b. 流入=流出

总结电流图

欧姆定律 y=ce
KCL
电势差 e=x2-x1=AX
电流y1,y2...y5
A^Ty=f=0 f为外接电流

结论

树:没有回路的图
d i m ( N ( A T ) ) = m − r dim(N(A^T)) = m - r dim(N(AT))=mr
# l o o p = # e d g e s − ( # n o d e s − 1 ) \#loop = \#edges - (\#nodes - 1) #loop=#edges(#nodes1)

# n o d e s − # e d g e s + # l o o p = 1 \#nodes-\#edges +\#loop = 1 #nodes#edges+#loop=1(对所有图适用)

相关文章:

12.【线性代数】——图和网络

十二 图和网络(线性代数的应用) 图 g r a p h { n o d e s , e d g e s } graph\{nodes, edges\} graph{nodes,edges}1.关联矩阵2. A A A矩阵的零空间,求解 A x 0 Ax0 Ax0 电势3. A T A^T AT矩阵的零空间,电流总结电流图结论 …...

[环境搭建篇] Windows 环境下如何安装repo工具

Windows 环境下如何安装repo工具 1. 安装前置依赖2. 配置Repo引导脚本方法一:通过Gitee镜像安装(推荐)方法二:通过清华镜像安装 3. 解决依赖问题4. 初始化Repo仓库5. 常见问题解决 前言: 在Windows环境下安装Repo工具需…...

LeetCode 热题 100_字符串解码(71_394_中等_C++)(栈)

LeetCode 热题 100_字符串解码(71_394) 题目描述:输入输出样例:题解:解题思路:思路一(栈): 代码实现代码实现(栈):以思路一为例进行调…...

「DataX」数据迁移-IDEA运行DataX方法总结

背景 业务需求希望把Oracle数据库中的数据,迁移至MySql数据库中,因为需要迁移全量和增量的数据,所以希望想用数据迁移工具进行操作。 经过一些调研查询,最终打算使用DataX进行数据的迁移。 DataX简单介绍 DataX 是阿里云 DataW…...

【 <一> 炼丹初探:JavaWeb 的起源与基础】之 Servlet 过滤器:实现请求的预处理与后处理

<前文回顾> 点击此处查看 合集 https://blog.csdn.net/foyodesigner/category_12907601.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId12907601&sharereferPC&sharesourceFoyoDesigner&sharefromfrom_link <今日更新> 一、过滤器&…...

DeepSeek与浏览器自动化AI Agent构建指南

文章使用到的模型可以用硅基流动中的&#xff1a; 注册链接&#xff1a;硅基流动统一登录 邀请码&#xff1a;FytHp9Xa 一、技术选型阶段 1. 基础组件选择 AI模型&#xff1a;DeepSeek-R1开放API&#xff08;对话/推理&#xff09;或DeepSeek-Coder&#xff08;代码生成&#…...

面试中常问的mysql数据库指令【杭州多测师_王sir】

数据库中的修改表结构、增删改查、用户权限操作DDL 》数据库定义语言 create database&#xff0c;create table drop tableDML 》数据库操作语言 insert into&#xff0c;delete from&#xff0c;update set&#xff0c;DQL 》数据库查询语言 select .... from....crea…...

深度学习驱动的智能化革命:从技术突破到行业实践

第一章 深度学习的技术演进与核心架构 1.1 从浅层网络到深度学习的范式转变 深度学习的核心在于通过多层次非线性变换自动提取数据特征,其发展历程可划分为三个阶段:符号主义时代的规则驱动(1950s-1980s)、连接主义时代的浅层网络(1990s-2000s)以及深度学习时代的端到端…...

基于编译器特性浅析C++程序性能优化

最近在恶补计算机基础知识&#xff0c;学到CSAPP第五章的内容&#xff0c;在这里总结并且展开一下C程序性能优化相关的内容。 衡量程序性能的方式 一般而言&#xff0c;程序的性能可以用CPE&#xff08;Cycles Per Element&#xff09;来衡量&#xff0c;其指的是处理每个元素…...

服务器上通过ollama部署deepseek

2025年1月下旬&#xff0c;DeepSeek的R1模型发布后的一周内就火了&#xff0c;性能比肩OpenAI的o1模型&#xff0c;且训练成本仅为560万美元&#xff0c;成本远低于openAI&#xff0c;使得英伟达股票大跌。 下面我们来看下如何个人如何部署deepseek-r1模型。 我是用的仙宫云的…...

Android Coil总结

文章目录 Android Coil总结概述添加依赖用法基本用法占位图变形自定义ImageLoader取消加载协程支持缓存清除缓存监听 简单封装 Android Coil总结 概述 Coil 是一个用于 Android 的 Kotlin 图像加载库&#xff0c;旨在简化图像加载和显示的过程。它基于 Kotlin 协程&#xff0…...

《安富莱嵌入式周报》第351期:DIY半导体制造,工业设备抗干扰提升方法,NASA软件开发规范,小型LCD在线UI编辑器,开源USB PD电源,开源锂电池管理

周报汇总地址&#xff1a;嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频版&#xff1a; https://www.bilibili.com/video/BV16C95YEEZs 《安富莱嵌入式周报》第351期&#xff1a;DIY半导体…...

Redis在人员管理系统中的应用示例

用户会话管理 场景&#xff1a;用户登录后存储会话信息&#xff0c;支持多服务器共享 实现&#xff1a; 用户登录成功后&#xff0c;生成唯一Token&#xff08;如JWT&#xff09;&#xff0c;作为Redis的Key Value存储用户ID、角色、权限等信息&#xff0c;设置过期时间&…...

The Wedding Juicer POJ - 2227

采取从外层边界&#xff0c;一步一步向内部拓展的策略&#xff0c;具体来说&#xff0c;一开始将最外面一层的点加入队列&#xff0c;并标记这些点的坐标已经被访问 取出队列中高度最低的点&#xff0c;将其弹出&#xff0c;查看其上下左右的点&#xff0c;如果新点没有被访问…...

# 深入理解RNN(一):循环神经网络的核心计算机制

深入理解RNN&#xff1a;循环神经网络的核心计算机制 RNN示意图 引言 在自然语言处理、时间序列预测、语音识别等涉及序列数据的领域&#xff0c;循环神经网络(RNN)一直扮演着核心角色。尽管近年来Transformer等架构逐渐成为主流&#xff0c;RNN的基本原理和思想依然对于理…...

分布式锁—6.Redisson的同步器组件

大纲 1.Redisson的分布式锁简单总结 2.Redisson的Semaphore简介 3.Redisson的Semaphore源码剖析 4.Redisson的CountDownLatch简介 5.Redisson的CountDownLatch源码剖析 1.Redisson的分布式锁简单总结 (1)可重入锁RedissonLock (2)公平锁RedissonFairLock (3)联锁MultiL…...

同步 Fork 仓库的命令

同步 Fork 仓库的命令 要将您 fork 的仓库的 main 分支与原始仓库&#xff08;fork 源&#xff09;同步&#xff0c;您可以使用以下命令&#xff1a; 首先&#xff0c;确保您已经添加了原始仓库作为远程仓库&#xff08;如果尚未添加&#xff09;&#xff1a; git remote add…...

基于PySide6的CATIA零件自动化着色工具开发实践

引言 在汽车及航空制造领域&#xff0c;CATIA作为核心的CAD设计软件&#xff0c;其二次开发能力对提升设计效率具有重要意义。本文介绍一种基于Python的CATIA零件着色工具开发方案&#xff0c;通过PySide6实现GUI交互&#xff0c;结合COM接口操作实现零件着色自动化。该方案成…...

OpenManus 的提示词

OpenManus 的提示词 引言英文提示词的详细内容工具集的详细说明中文翻译的详细内容GitHub 仓库信息背景分析总结 引言 OpenManus 是一个全能 AI 助手&#xff0c;旨在通过多种工具高效地完成用户提出的各种任务&#xff0c;包括编程、信息检索、文件处理和网页浏览等。其系统提…...

Ubuntu-docker安装mysql

只记录执行步骤。 1 手动下载myql镜像&#xff08;拉去华为云镜像&#xff09; docker pull swr.cn-east-3.myhuaweicloud.com/library/mysql:latest配置并启动mysql 在opt下创建文件夹 命令&#xff1a;cd /opt/ 命令&#xff1a;mkdir mysql_docker 命令&#xff1a;cd m…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

云原生安全实战:API网关Kong的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关&#xff08;API Gateway&#xff09; API网关是微服务架构中的核心组件&#xff0c;负责统一管理所有API的流量入口。它像一座…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...