当前位置: 首页 > news >正文

12.【线性代数】——图和网络

g r a p h = { n o d e s , e d g e s } graph=\{nodes, edges\} graph={nodes,edges}

1
3
2
4
5
node1
node2
node3
node4

上图中,有4个节点(node),5条边(edge),图上的各个数字为标号。

1.关联矩阵

A = [ − 1 1 0 0 0 − 1 1 0 − 1 0 1 0 − 1 0 0 1 0 0 − 1 1 ] ⏟ [ n o d e 1 , n o d e 2 , n o d e 3 , n o d e 4 ] A=\underbrace{\begin{bmatrix} -1&1&0&0\\ 0&-1&1&0\\ -1&0&1&0\\ -1&0&0&1\\ 0&0&-1&1 \end{bmatrix}}_{[node1, node2,node3,node4]} A=[node1,node2,node3,node4] 10110110000110100011
每一行表示一条边,-1表示开始的节点,1表示结束的节点。第一行表示 e d g e 1 edge_1 edge1
e d g e 1 edge_1 edge1 e d g e 2 edge_2 edge2 e d g e 3 edge_3 edge3现象相关,存在回路( e d g e 1 + e d g e 2 = e d g e 3 edge_1+edge_2=edge_3 edge1+edge2=edge3)。

树:没有回路的图

把图看做是电流图。每一个节点表示电势。两个节点的电势差,形成电流。

2. A A A矩阵的零空间,求解 A x = 0 Ax=0 Ax=0 电势

A [ x 1 x 2 x 3 x 4 ] = [ x 2 − x 1 x 3 − x 2 x 3 − x 1 x 4 − x 1 x 4 − x 3 ] = [ 0 0 0 0 0 ] A \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = \begin{bmatrix} x_2-x_1\\ x_3-x_2\\ x_3-x_1\\ x_4-x_1\\ x_4-x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} A x1x2x3x4 = x2x1x3x2x3x1x4x1x4x3 = 00000
解得:
x = c [ 1 1 1 1 ] x = c\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} x=c 1111

d i m ( N ( A ) ) = 1 , 那么 r a n k A = n − 1 = # n o d e s − 1 dim(N(A)) = 1, 那么rankA = n - 1 = \#nodes - 1 dim(N(A))=1,那么rankA=n1=#nodes1

3. A T A^T AT矩阵的零空间,电流

A T y = [ − 1 0 − 1 − 1 0 1 − 1 0 0 0 0 1 1 0 − 1 0 0 0 1 1 ] [ y 1 y 2 y 3 y 4 y 5 ] = [ 0 0 0 0 ] A^Ty=\begin{bmatrix} -1&0&-1&-1&0\\ 1&-1&0&0&0\\ 0&1&1&0&-1\\ 0&0&0&1&1 \end{bmatrix}\begin{bmatrix} y_1\\ y_2\\ y_3\\ y_4\\ y_5\\ \end{bmatrix} =\begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} ATy= 11000110101010010011 y1y2y3y4y5 = 0000
得出:
{ − y 1 − y 3 − y 4 = 0 ( 合流 = 0 ) y 1 − y 2 = 0 ( 流入 = 流出 ) y 2 + y 3 − y 5 = 0 ( 流入 = 流出 ) y 4 + y 5 = 0 ( 合流 = 0 ) ⇒ y = c [ 1 1 − 1 0 0 ] + d [ 0 0 1 − 1 1 ] ( 两个基为图中的回路 # l o o p ) \begin{cases} -y_1 -y_3 -y_4 =0 (合流=0) \\ y_1-y_2=0 (流入=流出) \\ y_2+y_3-y_5=0(流入=流出) \\ y_4+y_5=0 (合流=0) \end{cases}\xRightarrow{} y= c\begin{bmatrix} 1\\1\\-1\\0\\0 \end{bmatrix} + d\begin{bmatrix} 0\\ 0\\ 1\\ -1\\1 \end{bmatrix} (两个基为图中的回路\#loop) y1y3y4=0(合流=0)y1y2=0(流入=流出)y2+y3y5=0(流入=流出)y4+y5=0(合流=0) y=c 11100 +d 00111 (两个基为图中的回路#loop)

KCL定律: a. 合流 = 0 b. 流入=流出

总结电流图

欧姆定律 y=ce
KCL
电势差 e=x2-x1=AX
电流y1,y2...y5
A^Ty=f=0 f为外接电流

结论

树:没有回路的图
d i m ( N ( A T ) ) = m − r dim(N(A^T)) = m - r dim(N(AT))=mr
# l o o p = # e d g e s − ( # n o d e s − 1 ) \#loop = \#edges - (\#nodes - 1) #loop=#edges(#nodes1)

# n o d e s − # e d g e s + # l o o p = 1 \#nodes-\#edges +\#loop = 1 #nodes#edges+#loop=1(对所有图适用)

相关文章:

12.【线性代数】——图和网络

十二 图和网络(线性代数的应用) 图 g r a p h { n o d e s , e d g e s } graph\{nodes, edges\} graph{nodes,edges}1.关联矩阵2. A A A矩阵的零空间,求解 A x 0 Ax0 Ax0 电势3. A T A^T AT矩阵的零空间,电流总结电流图结论 …...

[环境搭建篇] Windows 环境下如何安装repo工具

Windows 环境下如何安装repo工具 1. 安装前置依赖2. 配置Repo引导脚本方法一:通过Gitee镜像安装(推荐)方法二:通过清华镜像安装 3. 解决依赖问题4. 初始化Repo仓库5. 常见问题解决 前言: 在Windows环境下安装Repo工具需…...

LeetCode 热题 100_字符串解码(71_394_中等_C++)(栈)

LeetCode 热题 100_字符串解码(71_394) 题目描述:输入输出样例:题解:解题思路:思路一(栈): 代码实现代码实现(栈):以思路一为例进行调…...

「DataX」数据迁移-IDEA运行DataX方法总结

背景 业务需求希望把Oracle数据库中的数据,迁移至MySql数据库中,因为需要迁移全量和增量的数据,所以希望想用数据迁移工具进行操作。 经过一些调研查询,最终打算使用DataX进行数据的迁移。 DataX简单介绍 DataX 是阿里云 DataW…...

【 <一> 炼丹初探:JavaWeb 的起源与基础】之 Servlet 过滤器:实现请求的预处理与后处理

<前文回顾> 点击此处查看 合集 https://blog.csdn.net/foyodesigner/category_12907601.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId12907601&sharereferPC&sharesourceFoyoDesigner&sharefromfrom_link <今日更新> 一、过滤器&…...

DeepSeek与浏览器自动化AI Agent构建指南

文章使用到的模型可以用硅基流动中的&#xff1a; 注册链接&#xff1a;硅基流动统一登录 邀请码&#xff1a;FytHp9Xa 一、技术选型阶段 1. 基础组件选择 AI模型&#xff1a;DeepSeek-R1开放API&#xff08;对话/推理&#xff09;或DeepSeek-Coder&#xff08;代码生成&#…...

面试中常问的mysql数据库指令【杭州多测师_王sir】

数据库中的修改表结构、增删改查、用户权限操作DDL 》数据库定义语言 create database&#xff0c;create table drop tableDML 》数据库操作语言 insert into&#xff0c;delete from&#xff0c;update set&#xff0c;DQL 》数据库查询语言 select .... from....crea…...

深度学习驱动的智能化革命:从技术突破到行业实践

第一章 深度学习的技术演进与核心架构 1.1 从浅层网络到深度学习的范式转变 深度学习的核心在于通过多层次非线性变换自动提取数据特征,其发展历程可划分为三个阶段:符号主义时代的规则驱动(1950s-1980s)、连接主义时代的浅层网络(1990s-2000s)以及深度学习时代的端到端…...

基于编译器特性浅析C++程序性能优化

最近在恶补计算机基础知识&#xff0c;学到CSAPP第五章的内容&#xff0c;在这里总结并且展开一下C程序性能优化相关的内容。 衡量程序性能的方式 一般而言&#xff0c;程序的性能可以用CPE&#xff08;Cycles Per Element&#xff09;来衡量&#xff0c;其指的是处理每个元素…...

服务器上通过ollama部署deepseek

2025年1月下旬&#xff0c;DeepSeek的R1模型发布后的一周内就火了&#xff0c;性能比肩OpenAI的o1模型&#xff0c;且训练成本仅为560万美元&#xff0c;成本远低于openAI&#xff0c;使得英伟达股票大跌。 下面我们来看下如何个人如何部署deepseek-r1模型。 我是用的仙宫云的…...

Android Coil总结

文章目录 Android Coil总结概述添加依赖用法基本用法占位图变形自定义ImageLoader取消加载协程支持缓存清除缓存监听 简单封装 Android Coil总结 概述 Coil 是一个用于 Android 的 Kotlin 图像加载库&#xff0c;旨在简化图像加载和显示的过程。它基于 Kotlin 协程&#xff0…...

《安富莱嵌入式周报》第351期:DIY半导体制造,工业设备抗干扰提升方法,NASA软件开发规范,小型LCD在线UI编辑器,开源USB PD电源,开源锂电池管理

周报汇总地址&#xff1a;嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频版&#xff1a; https://www.bilibili.com/video/BV16C95YEEZs 《安富莱嵌入式周报》第351期&#xff1a;DIY半导体…...

Redis在人员管理系统中的应用示例

用户会话管理 场景&#xff1a;用户登录后存储会话信息&#xff0c;支持多服务器共享 实现&#xff1a; 用户登录成功后&#xff0c;生成唯一Token&#xff08;如JWT&#xff09;&#xff0c;作为Redis的Key Value存储用户ID、角色、权限等信息&#xff0c;设置过期时间&…...

The Wedding Juicer POJ - 2227

采取从外层边界&#xff0c;一步一步向内部拓展的策略&#xff0c;具体来说&#xff0c;一开始将最外面一层的点加入队列&#xff0c;并标记这些点的坐标已经被访问 取出队列中高度最低的点&#xff0c;将其弹出&#xff0c;查看其上下左右的点&#xff0c;如果新点没有被访问…...

# 深入理解RNN(一):循环神经网络的核心计算机制

深入理解RNN&#xff1a;循环神经网络的核心计算机制 RNN示意图 引言 在自然语言处理、时间序列预测、语音识别等涉及序列数据的领域&#xff0c;循环神经网络(RNN)一直扮演着核心角色。尽管近年来Transformer等架构逐渐成为主流&#xff0c;RNN的基本原理和思想依然对于理…...

分布式锁—6.Redisson的同步器组件

大纲 1.Redisson的分布式锁简单总结 2.Redisson的Semaphore简介 3.Redisson的Semaphore源码剖析 4.Redisson的CountDownLatch简介 5.Redisson的CountDownLatch源码剖析 1.Redisson的分布式锁简单总结 (1)可重入锁RedissonLock (2)公平锁RedissonFairLock (3)联锁MultiL…...

同步 Fork 仓库的命令

同步 Fork 仓库的命令 要将您 fork 的仓库的 main 分支与原始仓库&#xff08;fork 源&#xff09;同步&#xff0c;您可以使用以下命令&#xff1a; 首先&#xff0c;确保您已经添加了原始仓库作为远程仓库&#xff08;如果尚未添加&#xff09;&#xff1a; git remote add…...

基于PySide6的CATIA零件自动化着色工具开发实践

引言 在汽车及航空制造领域&#xff0c;CATIA作为核心的CAD设计软件&#xff0c;其二次开发能力对提升设计效率具有重要意义。本文介绍一种基于Python的CATIA零件着色工具开发方案&#xff0c;通过PySide6实现GUI交互&#xff0c;结合COM接口操作实现零件着色自动化。该方案成…...

OpenManus 的提示词

OpenManus 的提示词 引言英文提示词的详细内容工具集的详细说明中文翻译的详细内容GitHub 仓库信息背景分析总结 引言 OpenManus 是一个全能 AI 助手&#xff0c;旨在通过多种工具高效地完成用户提出的各种任务&#xff0c;包括编程、信息检索、文件处理和网页浏览等。其系统提…...

Ubuntu-docker安装mysql

只记录执行步骤。 1 手动下载myql镜像&#xff08;拉去华为云镜像&#xff09; docker pull swr.cn-east-3.myhuaweicloud.com/library/mysql:latest配置并启动mysql 在opt下创建文件夹 命令&#xff1a;cd /opt/ 命令&#xff1a;mkdir mysql_docker 命令&#xff1a;cd m…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...