12.【线性代数】——图和网络
十二 图和网络(线性代数的应用)
图 g r a p h = { n o d e s , e d g e s } graph=\{nodes, edges\} graph={nodes,edges}
上图中,有4个节点(node),5条边(edge),图上的各个数字为标号。
1.关联矩阵
A = [ − 1 1 0 0 0 − 1 1 0 − 1 0 1 0 − 1 0 0 1 0 0 − 1 1 ] ⏟ [ n o d e 1 , n o d e 2 , n o d e 3 , n o d e 4 ] A=\underbrace{\begin{bmatrix} -1&1&0&0\\ 0&-1&1&0\\ -1&0&1&0\\ -1&0&0&1\\ 0&0&-1&1 \end{bmatrix}}_{[node1, node2,node3,node4]} A=[node1,node2,node3,node4] −10−1−101−10000110−100011
每一行表示一条边,-1表示开始的节点,1表示结束的节点。第一行表示 e d g e 1 edge_1 edge1。
e d g e 1 edge_1 edge1, e d g e 2 edge_2 edge2和 e d g e 3 edge_3 edge3现象相关,存在回路( e d g e 1 + e d g e 2 = e d g e 3 edge_1+edge_2=edge_3 edge1+edge2=edge3)。
树:没有回路的图
把图看做是电流图。每一个节点表示电势。两个节点的电势差,形成电流。
2. A A A矩阵的零空间,求解 A x = 0 Ax=0 Ax=0 电势
A [ x 1 x 2 x 3 x 4 ] = [ x 2 − x 1 x 3 − x 2 x 3 − x 1 x 4 − x 1 x 4 − x 3 ] = [ 0 0 0 0 0 ] A \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = \begin{bmatrix} x_2-x_1\\ x_3-x_2\\ x_3-x_1\\ x_4-x_1\\ x_4-x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} A x1x2x3x4 = x2−x1x3−x2x3−x1x4−x1x4−x3 = 00000
解得:
x = c [ 1 1 1 1 ] x = c\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} x=c 1111
d i m ( N ( A ) ) = 1 , 那么 r a n k A = n − 1 = # n o d e s − 1 dim(N(A)) = 1, 那么rankA = n - 1 = \#nodes - 1 dim(N(A))=1,那么rankA=n−1=#nodes−1
3. A T A^T AT矩阵的零空间,电流
A T y = [ − 1 0 − 1 − 1 0 1 − 1 0 0 0 0 1 1 0 − 1 0 0 0 1 1 ] [ y 1 y 2 y 3 y 4 y 5 ] = [ 0 0 0 0 ] A^Ty=\begin{bmatrix} -1&0&-1&-1&0\\ 1&-1&0&0&0\\ 0&1&1&0&-1\\ 0&0&0&1&1 \end{bmatrix}\begin{bmatrix} y_1\\ y_2\\ y_3\\ y_4\\ y_5\\ \end{bmatrix} =\begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} ATy= −11000−110−1010−100100−11 y1y2y3y4y5 = 0000
得出:
{ − y 1 − y 3 − y 4 = 0 ( 合流 = 0 ) y 1 − y 2 = 0 ( 流入 = 流出 ) y 2 + y 3 − y 5 = 0 ( 流入 = 流出 ) y 4 + y 5 = 0 ( 合流 = 0 ) ⇒ y = c [ 1 1 − 1 0 0 ] + d [ 0 0 1 − 1 1 ] ( 两个基为图中的回路 # l o o p ) \begin{cases} -y_1 -y_3 -y_4 =0 (合流=0) \\ y_1-y_2=0 (流入=流出) \\ y_2+y_3-y_5=0(流入=流出) \\ y_4+y_5=0 (合流=0) \end{cases}\xRightarrow{} y= c\begin{bmatrix} 1\\1\\-1\\0\\0 \end{bmatrix} + d\begin{bmatrix} 0\\ 0\\ 1\\ -1\\1 \end{bmatrix} (两个基为图中的回路\#loop) ⎩ ⎨ ⎧−y1−y3−y4=0(合流=0)y1−y2=0(流入=流出)y2+y3−y5=0(流入=流出)y4+y5=0(合流=0)y=c 11−100 +d 001−11 (两个基为图中的回路#loop)
KCL定律: a. 合流 = 0 b. 流入=流出
总结电流图
结论
树:没有回路的图
d i m ( N ( A T ) ) = m − r dim(N(A^T)) = m - r dim(N(AT))=m−r
# l o o p = # e d g e s − ( # n o d e s − 1 ) \#loop = \#edges - (\#nodes - 1) #loop=#edges−(#nodes−1)
# n o d e s − # e d g e s + # l o o p = 1 \#nodes-\#edges +\#loop = 1 #nodes−#edges+#loop=1(对所有图适用)
相关文章:
12.【线性代数】——图和网络
十二 图和网络(线性代数的应用) 图 g r a p h { n o d e s , e d g e s } graph\{nodes, edges\} graph{nodes,edges}1.关联矩阵2. A A A矩阵的零空间,求解 A x 0 Ax0 Ax0 电势3. A T A^T AT矩阵的零空间,电流总结电流图结论 …...
[环境搭建篇] Windows 环境下如何安装repo工具
Windows 环境下如何安装repo工具 1. 安装前置依赖2. 配置Repo引导脚本方法一:通过Gitee镜像安装(推荐)方法二:通过清华镜像安装 3. 解决依赖问题4. 初始化Repo仓库5. 常见问题解决 前言: 在Windows环境下安装Repo工具需…...
LeetCode 热题 100_字符串解码(71_394_中等_C++)(栈)
LeetCode 热题 100_字符串解码(71_394) 题目描述:输入输出样例:题解:解题思路:思路一(栈): 代码实现代码实现(栈):以思路一为例进行调…...
「DataX」数据迁移-IDEA运行DataX方法总结
背景 业务需求希望把Oracle数据库中的数据,迁移至MySql数据库中,因为需要迁移全量和增量的数据,所以希望想用数据迁移工具进行操作。 经过一些调研查询,最终打算使用DataX进行数据的迁移。 DataX简单介绍 DataX 是阿里云 DataW…...
【 <一> 炼丹初探:JavaWeb 的起源与基础】之 Servlet 过滤器:实现请求的预处理与后处理
<前文回顾> 点击此处查看 合集 https://blog.csdn.net/foyodesigner/category_12907601.html?fromshareblogcolumn&sharetypeblogcolumn&sharerId12907601&sharereferPC&sharesourceFoyoDesigner&sharefromfrom_link <今日更新> 一、过滤器&…...
DeepSeek与浏览器自动化AI Agent构建指南
文章使用到的模型可以用硅基流动中的: 注册链接:硅基流动统一登录 邀请码:FytHp9Xa 一、技术选型阶段 1. 基础组件选择 AI模型:DeepSeek-R1开放API(对话/推理)或DeepSeek-Coder(代码生成&#…...
面试中常问的mysql数据库指令【杭州多测师_王sir】
数据库中的修改表结构、增删改查、用户权限操作DDL 》数据库定义语言 create database,create table drop tableDML 》数据库操作语言 insert into,delete from,update set,DQL 》数据库查询语言 select .... from....crea…...
深度学习驱动的智能化革命:从技术突破到行业实践
第一章 深度学习的技术演进与核心架构 1.1 从浅层网络到深度学习的范式转变 深度学习的核心在于通过多层次非线性变换自动提取数据特征,其发展历程可划分为三个阶段:符号主义时代的规则驱动(1950s-1980s)、连接主义时代的浅层网络(1990s-2000s)以及深度学习时代的端到端…...
基于编译器特性浅析C++程序性能优化
最近在恶补计算机基础知识,学到CSAPP第五章的内容,在这里总结并且展开一下C程序性能优化相关的内容。 衡量程序性能的方式 一般而言,程序的性能可以用CPE(Cycles Per Element)来衡量,其指的是处理每个元素…...
服务器上通过ollama部署deepseek
2025年1月下旬,DeepSeek的R1模型发布后的一周内就火了,性能比肩OpenAI的o1模型,且训练成本仅为560万美元,成本远低于openAI,使得英伟达股票大跌。 下面我们来看下如何个人如何部署deepseek-r1模型。 我是用的仙宫云的…...
Android Coil总结
文章目录 Android Coil总结概述添加依赖用法基本用法占位图变形自定义ImageLoader取消加载协程支持缓存清除缓存监听 简单封装 Android Coil总结 概述 Coil 是一个用于 Android 的 Kotlin 图像加载库,旨在简化图像加载和显示的过程。它基于 Kotlin 协程࿰…...
《安富莱嵌入式周报》第351期:DIY半导体制造,工业设备抗干扰提升方法,NASA软件开发规范,小型LCD在线UI编辑器,开源USB PD电源,开源锂电池管理
周报汇总地址:嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频版: https://www.bilibili.com/video/BV16C95YEEZs 《安富莱嵌入式周报》第351期:DIY半导体…...
Redis在人员管理系统中的应用示例
用户会话管理 场景:用户登录后存储会话信息,支持多服务器共享 实现: 用户登录成功后,生成唯一Token(如JWT),作为Redis的Key Value存储用户ID、角色、权限等信息,设置过期时间&…...
The Wedding Juicer POJ - 2227
采取从外层边界,一步一步向内部拓展的策略,具体来说,一开始将最外面一层的点加入队列,并标记这些点的坐标已经被访问 取出队列中高度最低的点,将其弹出,查看其上下左右的点,如果新点没有被访问…...
# 深入理解RNN(一):循环神经网络的核心计算机制
深入理解RNN:循环神经网络的核心计算机制 RNN示意图 引言 在自然语言处理、时间序列预测、语音识别等涉及序列数据的领域,循环神经网络(RNN)一直扮演着核心角色。尽管近年来Transformer等架构逐渐成为主流,RNN的基本原理和思想依然对于理…...
分布式锁—6.Redisson的同步器组件
大纲 1.Redisson的分布式锁简单总结 2.Redisson的Semaphore简介 3.Redisson的Semaphore源码剖析 4.Redisson的CountDownLatch简介 5.Redisson的CountDownLatch源码剖析 1.Redisson的分布式锁简单总结 (1)可重入锁RedissonLock (2)公平锁RedissonFairLock (3)联锁MultiL…...
同步 Fork 仓库的命令
同步 Fork 仓库的命令 要将您 fork 的仓库的 main 分支与原始仓库(fork 源)同步,您可以使用以下命令: 首先,确保您已经添加了原始仓库作为远程仓库(如果尚未添加): git remote add…...
基于PySide6的CATIA零件自动化着色工具开发实践
引言 在汽车及航空制造领域,CATIA作为核心的CAD设计软件,其二次开发能力对提升设计效率具有重要意义。本文介绍一种基于Python的CATIA零件着色工具开发方案,通过PySide6实现GUI交互,结合COM接口操作实现零件着色自动化。该方案成…...
OpenManus 的提示词
OpenManus 的提示词 引言英文提示词的详细内容工具集的详细说明中文翻译的详细内容GitHub 仓库信息背景分析总结 引言 OpenManus 是一个全能 AI 助手,旨在通过多种工具高效地完成用户提出的各种任务,包括编程、信息检索、文件处理和网页浏览等。其系统提…...
Ubuntu-docker安装mysql
只记录执行步骤。 1 手动下载myql镜像(拉去华为云镜像) docker pull swr.cn-east-3.myhuaweicloud.com/library/mysql:latest配置并启动mysql 在opt下创建文件夹 命令:cd /opt/ 命令:mkdir mysql_docker 命令:cd m…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
