当前位置: 首页 > news >正文

[数据结构]堆详解

目录

一、堆的概念及结构

二、堆的实现

1.堆的定义

2堆的初始化

3堆的插入

​编辑 4.堆的删除

5堆的其他操作

6代码合集

三、堆的应用

(一)堆排序(重点)

(二)TOP-K问题


一、堆的概念及结构

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;

  • 堆总是一棵完全二叉树(但实现起来是线性表)。

二、堆的实现

1.堆的定义

//大堆
typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;

2堆的初始化

//堆的初始化
void HeapInit(HP* php)
{assert(php);php->a = (HPDataType*)malloc(sizeof(HPDataType)*4);if (php->a == NULL){perror("malloc fail");return;}php->size = 0;php->capacity = 4;
}

3堆的插入

//从孩子的位置向上调整函数
void AdjustUp(HPDataType* a, int child)//child是向上调整数的下标
{int parent = (child - 1) / 2;while (child>0){if (a[child] > a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
//堆的插入
void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType) *  php->capacity*2);if (php->a == NULL){perror("malloc fail");return;}// 将旧数据拷贝到新内存中for (int i = 0; i < php->size; i++){tmp[i] = php->a[i];}free(php->a);php->a = tmp;php->capacity *= 2;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);//刚才size++了,所以向上调整的孩子的位置是size-1
}

 4.堆的删除

删除堆顶,用处:可用来排序选出前几名

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

难点:

  • 向下比怎么比?下面哪个儿子大就和谁比

  • 怎么判断已经到叶子节点了?计算该节点的孩子节点有没有超出范围

//向下调整
void AdjustDown(HPDataType* a, int n,int parent)
{int child = parent * 2 + 1;//先默认左孩子大while (child < n){//选出左右孩子中大的那一个  右孩子和左孩子的关系:大一if (child+1<n && a[child + 1] > a[child]){++child;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
//堆的删除
void HeapPop(HP* php)
{assert(php);assert(!HeapEmpty(php));Swap(&php->a[0], &php->a[php->size - 1]);//交换堆顶和最后一个数php->size--;AdjustDown(php->a, php->size,0);
}

如果想要取前k个,那么修改如下: 

5堆的其他操作

//显示堆顶元素
HPDataType HeapTop(HP* php)
{assert(php);return php->a[0];
}
//判断堆是否为空
bool HeapEmpty(HP* php)
{assert(php);return php->size==0;
}
//显示堆的大小
int HeapSize(HP* php)
{assert(php);return php->size;
}
//销毁
void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}

6代码合集

Heap.h

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
//大堆
typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;
//堆的初始化
void HeapInit(HP* php);
//堆的插入
void HeapPush(HP* php, HPDataType x);
//堆的删除
void HeapPop(HP* php);
//显示堆顶元素
HPDataType HeapTop(HP* php);
//判断堆是否为空
bool HeapEmpty(HP* php);
//显示堆的大小
int HeapSize(HP* php);
//销毁
void HeapDestroy(HP* php);
//从孩子的位置向上调整函数
void AdjustUp(HPDataType* a, int child);
//向下调整
void AdjustDown(HPDataType* a, int n, int parent);

Heap.c

#include"Heap.h"
//堆的初始化
void HeapInit(HP* php)
{assert(php);php->a = (HPDataType*)malloc(sizeof(HPDataType)*4);if (php->a == NULL){perror("malloc fail");return;}php->size = 0;php->capacity = 4;
}
void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType temp = *p1;*p1 =*p2;*p2 = temp;
}
//从孩子的位置向上调整函数
void AdjustUp(HPDataType* a, int child)//child是向上调整数的下标
{int parent = (child - 1) / 2;while (child>0){if (a[child] > a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
//堆的插入
void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType) *  php->capacity*2);if (php->a == NULL){perror("malloc fail");return;}// 将旧数据拷贝到新内存中for (int i = 0; i < php->size; i++){tmp[i] = php->a[i];}free(php->a);php->a = tmp;php->capacity *= 2;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);//刚才size++了,所以向上调整的孩子的位置是size-1
}
//向下调整
void AdjustDown(HPDataType* a, int n,int parent)
{int child = parent * 2 + 1;//先默认左孩子大while (child < n){//选出左右孩子中大的那一个  右孩子和左孩子的关系:大一if (child+1<n && a[child + 1] > a[child]){++child;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
//堆的删除
void HeapPop(HP* php)
{assert(php);assert(!HeapEmpty(php));Swap(&php->a[0], &php->a[php->size - 1]);//交换堆顶和最后一个数php->size--;AdjustDown(php->a, php->size,0);
}
//显示堆顶元素
HPDataType HeapTop(HP* php)
{assert(php);return php->a[0];
}
//判断堆是否为空
bool HeapEmpty(HP* php)
{assert(php);return php->size==0;
}
//显示堆的大小
int HeapSize(HP* php)
{assert(php);return php->size;
}
//销毁
void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}

test.c

#include"Heap.h"
int main()
{HP hp;HeapInit(&hp);HeapPush(&hp, 4);HeapPush(&hp, 18);HeapPush(&hp, 42);HeapPush(&hp, 12);HeapPush(&hp, 2);HeapPush(&hp, 3);int k = 0;scanf_s("%d", &k);while (!HeapEmpty(&hp)&&k--){printf("%d ", HeapTop(&hp));HeapPop(&hp);//和栈非常相似,想把老二取出来就得把老大干掉}printf("\n");return 0;
}

三、堆的应用

(一)堆排序(重点)

①. 建堆
  • 升序:建大堆
  • 降序:建小堆
建堆方式:
向上调整建堆:模拟的是插入数据的过程
//排升序建大堆
void HeapSort(int* a, int n)
{//建大堆for (int i = 1; i < n; i++){AdjustUp(a, i);}
}

向下调整建堆(左右子树必须是大堆或小堆(插入之前得是堆)):

void HeapSort(int* a, int n)
{//向下调整建堆for (int i = (n - 1 - 1) / 2; i >= 0;--i)//先找到最后一个非叶子结点即上图的6 n-1是最后一个数据的下标,再-1除以2就是父节点{AdjustDown(a, n, i);}
}

注:向下建堆的效率O(N)比向上建堆的效率O(N*logN)高

数学证明如下:

②. 利用堆删除思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

代码实现:

#include<stdlib.h>void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType temp = *p1;*p1 =*p2;*p2 = temp;
}
//从孩子的位置向上调整函数
void AdjustUp(HPDataType* a, int child)//child是向上调整数的下标
{int parent = (child - 1) / 2;while (child>0){if (a[child] > a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//向下调整
void AdjustDown(HPDataType* a, int n,int parent)
{int child = parent * 2 + 1;//先默认左孩子大while (child < n){//选出左右孩子中大的那一个  右孩子和左孩子的关系:大一if (child+1<n && a[child + 1] > a[child]){++child;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}//O(n*logn)
//排升序建大堆
void HeapSort(int* a, int n)
{//向下调整建堆
for (int i = (n - 1 - 1) / 2; i >= 0;--i)//n-1是最后一个数据的下标,再-1除以2就是父节点
{AdjustDown(a, n, i);
}int end = n - 1;while (end>0){Swap(&a[end], &a[0]);AdjustDown(a, end, 0);--end;}
}
int main()
{int a[10] = { 2,1,5,7,6,8,0,9,3 };HeapSort(a, 9);return 0;
}

③堆排序的时间复杂度

所以如果用来排序的话,无论是向上调整还是向下调整建堆,总的时间复杂度都是O(N*logN)

(二)TOP-K问题

TOP-K 问题:即求数据结合中前 K 个最大的元素或者最小的元素,一般情况下数据量都比较大
比如:专业前 10 名、世界 500 强、富豪榜、游戏中前 100 的活跃玩家等。
对于 Top-K 问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了 ( 可能
数据都不能一下子全部加载到内存中 ) 。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前 K 个元素来建堆
k 个最大的元素,则建小堆
k 个最小的元素,则建大堆(和堆排序有点反过来的意思)
2. 用剩余的 N-K 个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余 N-K 个元素依次与堆顶元素比完之后,堆中剩余的 K 个元素就是所求的前 K 个最小或者最大的元素
#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"
void PrintTopK(const char* file, int k)
{// 1. 建堆--用a中前k个元素建小堆int* topk = (int*)malloc(sizeof(int) * k);assert(topk);//读文件FILE* fout = fopen(file, "r");if (fout == NULL){perror("fopen error");return;}//读出前K个数建堆for (int i = 0; i < k; ++i){fscanf(fout, "%d", &topk[i]);}//向下调整建堆for (int i = (k - 1 - 1) / 2; i >= 0; --i){AdjustDown(topk, k, i);}// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换int val = 0;int ret= fscanf(fout, "%d", &val);while (ret != EOF){if (val > topk[0])//如果新元素大于堆顶元素,那么替换堆顶元素{topk[0] = val;AdjustDown(topk, k, 0);}ret = fscanf(fout, "%d", &val);}//打印这个数组for (int i = 0; i < k; i++){printf("%d ", topk[i]);}printf("\n");free(topk);fclose(fout);
}
void TestTopk()
{//为了测试而造数据int n = 10000;srand(time(0));const char* file = "data.txt";FILE* fin = fopen(file, "w");if (fin == NULL){perror("fopen error");return;}for (size_t i = 0; i < n; ++i){int x = rand() % 10000;fprintf(fin, "%d\n", x);}fclose(fin);PrintTopK(file,10);
}
int main()
{TestTopk();return 0;
}

注意:这里是建小堆,AdjustDown里面需要调一下,之前是建大堆用的AdjustDown

相关文章:

[数据结构]堆详解

目录 一、堆的概念及结构 二、堆的实现 1.堆的定义 2堆的初始化 3堆的插入 ​编辑 4.堆的删除 5堆的其他操作 6代码合集 三、堆的应用 &#xff08;一&#xff09;堆排序&#xff08;重点&#xff09; &#xff08;二&#xff09;TOP-K问题 一、堆的概念及结构 堆的…...

领域驱动设计(DDD)与MVC架构:理念对比与架构选择

领域驱动设计&#xff08;DDD&#xff09;与MVC架构&#xff1a;理念对比与架构选择 一、架构之争的本质&#xff1a;业务复杂度驱动技术演进 在软件开发领域&#xff0c;没有银弹式的完美架构&#xff0c;只有适合当前业务场景的合理选择。MVC与DDD的区别本质上是业务复杂度与…...

牛客周赛:84:B:JAVA

链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 题目描述 import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class Main {public static void main(String[] args) {Scanner scanner new Scanner(S…...

【理想解法学习笔记】

目录 理想解法原理简介算法步骤属性值规范化方法代码示例 理想解法 原理简介 TOPSIS(Technique for Order Preference by Simi larity to IdealSolution)法是一种逼近理想解的排序方法。其基本的处理思路是&#xff1a;首先建立初始化决策矩阵&#xff0c;而后基于规范化后的初…...

CI/CD—Jenkins配置一次完整的jar自动化发布流程

背景&#xff1a; 实现设想&#xff1a; 要创建自动化发布&#xff0c;需要准备一台测试服务器提前安装好java运行所需的环境&#xff0c;JDK版本最好和Windows开发机器上的版本一致&#xff0c;在Jenkins上配置将构建好的jar上传到测试服务器上&#xff0c;测试服务器自动启动…...

Magento2根据图片文件包导入产品图片

图片包给的图片文件是子产品的图片&#xff0c;如下图&#xff1a;A104255是主产品的sku <?php/*** 根据图片包导入产品图片&#xff0c;包含子产品和主产品* 子产品是作为主图&#xff0c;主产品是作为附加图片*/use Magento\Framework\App\Bootstrap;include(../app/boot…...

从零开始的python学习(五)P71+P72+P73+P74

本文章记录观看B站python教程学习笔记和实践感悟&#xff0c;视频链接&#xff1a;【花了2万多买的Python教程全套&#xff0c;现在分享给大家&#xff0c;入门到精通(Python全栈开发教程)】 https://www.bilibili.com/video/BV1wD4y1o7AS/?p6&share_sourcecopy_web&v…...

OpenHarmony5.0分布式系统源码实现分析—软总线

一、引言 OpenHarmony 作为一款面向万物互联的操作系统&#xff0c;其分布式软总线&#xff08;Distributed SoftBus&#xff09;是实现设备间高效通信和协同的核心技术之一。分布式软总线通过构建一个虚拟的总线网络&#xff0c;使得不同设备能够无缝连接、通信和协同工作。本…...

基于SpringBoot实现旅游酒店平台功能六

一、前言介绍&#xff1a; 1.1 项目摘要 随着社会的快速发展和人民生活水平的不断提高&#xff0c;旅游已经成为人们休闲娱乐的重要方式之一。人们越来越注重生活的品质和精神文化的追求&#xff0c;旅游需求呈现出爆发式增长。这种增长不仅体现在旅游人数的增加上&#xff0…...

代码随想录算法训练营第六十一天 | 108. 冗余连接 109. 冗余连接II

108. 冗余连接 题目链接&#xff1a;KamaCoder 文档讲解&#xff1a;代码随想录 状态&#xff1a;AC Java代码&#xff1a; import java.util.*;class Main {public static int[] father;public static void main(String[] args) {Scanner scan new Scanner(System.in);int n…...

RoboVQA:机器人多模态长范围推理

23 年 11 月来自 Google Deepmind 的论文“RoboVQA: Multimodal Long-Horizon Reasoning for Robotics”。 本文提出一种可扩展、自下而上且本质多样化的数据收集方案&#xff0c;该方案可用于长期和中期的高级推理&#xff0c;与传统的狭窄自上而下的逐步收集相比&#xff0c…...

TCP/IP原理详细解析

前言 TCP/IP是一种面向连接&#xff0c;可靠的传输&#xff0c;传输数据大小无限制的。通常情况下&#xff0c;系统与系统之间的http连接需要三次握手和四次挥手&#xff0c;这个执行过程会产生等待时间。这方面在日常开发时需要注意一下。 TCP/IP 是互联网的核心协议族&…...

Microsof Visual Studio Code 安装教程(中文设置)

VS Code 是一个免费的代码编辑器&#xff0c;可在 macOS、Linux 和 Windows作系统上运行。启动和运行 VS Code 既快速又简单。VS Code&#xff08;全称 Visual Studio Code&#xff09;是一款由Microsoft 推出的免费、开源、跨平台的代码编辑器&#xff0c;拥有强大的功能和灵活…...

python爬虫:Android自动化工具Auto.js的详细使用

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 1. Auto.js 简介2. 安装与配置2.1 安装 Auto.js2.2 安装 Python 环境2.3 安装 ADB 工具3. Python 与 Auto.js 结合3.1 通过 ADB 执行 Auto.js 脚本3.2 通过 Python 控制 Auto.js3.3 通过 Python 与 Auto.js 交互4. 常用…...

Unity DOTS从入门到精通之 自定义Authoring类

文章目录 前言安装 DOTS 包什么是Authoring1. 实体组件2. Authoring类 前言 DOTS&#xff08;面向数据的技术堆栈&#xff09;是一套由 Unity 提供支持的技术&#xff0c;用于提供高性能游戏开发解决方案&#xff0c;特别适合需要处理大量数据的游戏&#xff0c;例如大型开放世…...

linux 软件安装(上)

一、基础环境准备 1.1、安装VM 1.2、在VM上导入linux iso镜像&#xff0c;装好linux系统 华为centos镜像下载地址 https://mirrors.huaweicloud.com/centos/ https://mirrors.huaweicloud.com/centos/7.9.2009/isos/x86_64/ 网易centos镜像下载地址 htt…...

php虚拟站点提示No input file specified时的问题及权限处理方法

访问站点&#xff0c;提示如下 No input file specified. 可能是文件权限有问题&#xff0c;也可能是“.user.ini”文件路径没有配置对&#xff0c;最简单的办法就是直接将它删除掉&#xff0c;还有就是将它设置正确 #配置成自己服务器上正确的路径 open_basedir/mnt/qiy/te…...

【江协科技STM32】ADC数模转换器-学习笔记

ADC简介 ADC&#xff08;Analog-Digital Converter&#xff09;模拟-数字转换器ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量&#xff0c;建立模拟电路到数字电路的桥梁&#xff0c;ADC是一种将连续的模拟信号转换为离散的数字信号的设备或模块12位逐次逼近型…...

QT系列教程(20) Qt 项目视图便捷类

视频连接 https://www.bilibili.com/video/BV1XY41127t3/?vd_source8be9e83424c2ed2c9b2a3ed1d01385e9 Qt项目视图便捷类 Qt项目视图提供了一些便捷类&#xff0c;包括QListWidget, QTableWidget&#xff0c; QTreeWidget等。我们分别介绍这几个便捷类。 我们先创建一个Qt …...

git worktree的使用

git worktree 是 Git 提供的一个强大功能&#xff0c;允许你在同一个仓库中同时创建多个工作目录&#xff0c;每个目录对应一个分支&#xff0c;从而实现并行开发。以下是 git worktree 的常用命令和使用方法&#xff1a; 1. 创建新的工作目录&#xff08;Worktree&#xff09…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...