[数据结构]堆详解
目录
一、堆的概念及结构
二、堆的实现
1.堆的定义
2堆的初始化
3堆的插入
编辑 4.堆的删除
5堆的其他操作
6代码合集
三、堆的应用
(一)堆排序(重点)
(二)TOP-K问题
一、堆的概念及结构
堆的性质:
-
堆中某个节点的值总是不大于或不小于其父节点的值;
-
堆总是一棵完全二叉树(但实现起来是线性表)。

二、堆的实现
1.堆的定义
//大堆
typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;
2堆的初始化
//堆的初始化
void HeapInit(HP* php)
{assert(php);php->a = (HPDataType*)malloc(sizeof(HPDataType)*4);if (php->a == NULL){perror("malloc fail");return;}php->size = 0;php->capacity = 4;
}
3堆的插入

//从孩子的位置向上调整函数
void AdjustUp(HPDataType* a, int child)//child是向上调整数的下标
{int parent = (child - 1) / 2;while (child>0){if (a[child] > a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
//堆的插入
void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType) * php->capacity*2);if (php->a == NULL){perror("malloc fail");return;}// 将旧数据拷贝到新内存中for (int i = 0; i < php->size; i++){tmp[i] = php->a[i];}free(php->a);php->a = tmp;php->capacity *= 2;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);//刚才size++了,所以向上调整的孩子的位置是size-1
}
4.堆的删除
删除堆顶,用处:可用来排序选出前几名
删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

难点:
-
向下比怎么比?下面哪个儿子大就和谁比
-
怎么判断已经到叶子节点了?计算该节点的孩子节点有没有超出范围
//向下调整
void AdjustDown(HPDataType* a, int n,int parent)
{int child = parent * 2 + 1;//先默认左孩子大while (child < n){//选出左右孩子中大的那一个 右孩子和左孩子的关系:大一if (child+1<n && a[child + 1] > a[child]){++child;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
//堆的删除
void HeapPop(HP* php)
{assert(php);assert(!HeapEmpty(php));Swap(&php->a[0], &php->a[php->size - 1]);//交换堆顶和最后一个数php->size--;AdjustDown(php->a, php->size,0);
}

如果想要取前k个,那么修改如下:

5堆的其他操作
//显示堆顶元素
HPDataType HeapTop(HP* php)
{assert(php);return php->a[0];
}
//判断堆是否为空
bool HeapEmpty(HP* php)
{assert(php);return php->size==0;
}
//显示堆的大小
int HeapSize(HP* php)
{assert(php);return php->size;
}
//销毁
void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}
6代码合集
Heap.h
#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
//大堆
typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;
//堆的初始化
void HeapInit(HP* php);
//堆的插入
void HeapPush(HP* php, HPDataType x);
//堆的删除
void HeapPop(HP* php);
//显示堆顶元素
HPDataType HeapTop(HP* php);
//判断堆是否为空
bool HeapEmpty(HP* php);
//显示堆的大小
int HeapSize(HP* php);
//销毁
void HeapDestroy(HP* php);
//从孩子的位置向上调整函数
void AdjustUp(HPDataType* a, int child);
//向下调整
void AdjustDown(HPDataType* a, int n, int parent);
Heap.c
#include"Heap.h"
//堆的初始化
void HeapInit(HP* php)
{assert(php);php->a = (HPDataType*)malloc(sizeof(HPDataType)*4);if (php->a == NULL){perror("malloc fail");return;}php->size = 0;php->capacity = 4;
}
void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType temp = *p1;*p1 =*p2;*p2 = temp;
}
//从孩子的位置向上调整函数
void AdjustUp(HPDataType* a, int child)//child是向上调整数的下标
{int parent = (child - 1) / 2;while (child>0){if (a[child] > a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
//堆的插入
void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType) * php->capacity*2);if (php->a == NULL){perror("malloc fail");return;}// 将旧数据拷贝到新内存中for (int i = 0; i < php->size; i++){tmp[i] = php->a[i];}free(php->a);php->a = tmp;php->capacity *= 2;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);//刚才size++了,所以向上调整的孩子的位置是size-1
}
//向下调整
void AdjustDown(HPDataType* a, int n,int parent)
{int child = parent * 2 + 1;//先默认左孩子大while (child < n){//选出左右孩子中大的那一个 右孩子和左孩子的关系:大一if (child+1<n && a[child + 1] > a[child]){++child;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
//堆的删除
void HeapPop(HP* php)
{assert(php);assert(!HeapEmpty(php));Swap(&php->a[0], &php->a[php->size - 1]);//交换堆顶和最后一个数php->size--;AdjustDown(php->a, php->size,0);
}
//显示堆顶元素
HPDataType HeapTop(HP* php)
{assert(php);return php->a[0];
}
//判断堆是否为空
bool HeapEmpty(HP* php)
{assert(php);return php->size==0;
}
//显示堆的大小
int HeapSize(HP* php)
{assert(php);return php->size;
}
//销毁
void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}
test.c
#include"Heap.h"
int main()
{HP hp;HeapInit(&hp);HeapPush(&hp, 4);HeapPush(&hp, 18);HeapPush(&hp, 42);HeapPush(&hp, 12);HeapPush(&hp, 2);HeapPush(&hp, 3);int k = 0;scanf_s("%d", &k);while (!HeapEmpty(&hp)&&k--){printf("%d ", HeapTop(&hp));HeapPop(&hp);//和栈非常相似,想把老二取出来就得把老大干掉}printf("\n");return 0;
}
三、堆的应用
(一)堆排序(重点)
- 升序:建大堆
- 降序:建小堆
//排升序建大堆
void HeapSort(int* a, int n)
{//建大堆for (int i = 1; i < n; i++){AdjustUp(a, i);}
}

向下调整建堆(左右子树必须是大堆或小堆(插入之前得是堆)):

void HeapSort(int* a, int n)
{//向下调整建堆for (int i = (n - 1 - 1) / 2; i >= 0;--i)//先找到最后一个非叶子结点即上图的6 n-1是最后一个数据的下标,再-1除以2就是父节点{AdjustDown(a, n, i);}
}
注:向下建堆的效率O(N)比向上建堆的效率O(N*logN)高
数学证明如下:

②. 利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

代码实现:
#include<stdlib.h>void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType temp = *p1;*p1 =*p2;*p2 = temp;
}
//从孩子的位置向上调整函数
void AdjustUp(HPDataType* a, int child)//child是向上调整数的下标
{int parent = (child - 1) / 2;while (child>0){if (a[child] > a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//向下调整
void AdjustDown(HPDataType* a, int n,int parent)
{int child = parent * 2 + 1;//先默认左孩子大while (child < n){//选出左右孩子中大的那一个 右孩子和左孩子的关系:大一if (child+1<n && a[child + 1] > a[child]){++child;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}//O(n*logn)
//排升序建大堆
void HeapSort(int* a, int n)
{//向下调整建堆
for (int i = (n - 1 - 1) / 2; i >= 0;--i)//n-1是最后一个数据的下标,再-1除以2就是父节点
{AdjustDown(a, n, i);
}int end = n - 1;while (end>0){Swap(&a[end], &a[0]);AdjustDown(a, end, 0);--end;}
}
int main()
{int a[10] = { 2,1,5,7,6,8,0,9,3 };HeapSort(a, 9);return 0;
}
③堆排序的时间复杂度

所以如果用来排序的话,无论是向上调整还是向下调整建堆,总的时间复杂度都是O(N*logN)
(二)TOP-K问题
#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"
void PrintTopK(const char* file, int k)
{// 1. 建堆--用a中前k个元素建小堆int* topk = (int*)malloc(sizeof(int) * k);assert(topk);//读文件FILE* fout = fopen(file, "r");if (fout == NULL){perror("fopen error");return;}//读出前K个数建堆for (int i = 0; i < k; ++i){fscanf(fout, "%d", &topk[i]);}//向下调整建堆for (int i = (k - 1 - 1) / 2; i >= 0; --i){AdjustDown(topk, k, i);}// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换int val = 0;int ret= fscanf(fout, "%d", &val);while (ret != EOF){if (val > topk[0])//如果新元素大于堆顶元素,那么替换堆顶元素{topk[0] = val;AdjustDown(topk, k, 0);}ret = fscanf(fout, "%d", &val);}//打印这个数组for (int i = 0; i < k; i++){printf("%d ", topk[i]);}printf("\n");free(topk);fclose(fout);
}
void TestTopk()
{//为了测试而造数据int n = 10000;srand(time(0));const char* file = "data.txt";FILE* fin = fopen(file, "w");if (fin == NULL){perror("fopen error");return;}for (size_t i = 0; i < n; ++i){int x = rand() % 10000;fprintf(fin, "%d\n", x);}fclose(fin);PrintTopK(file,10);
}
int main()
{TestTopk();return 0;
} 注意:这里是建小堆,AdjustDown里面需要调一下,之前是建大堆用的AdjustDown
相关文章:
[数据结构]堆详解
目录 一、堆的概念及结构 二、堆的实现 1.堆的定义 2堆的初始化 3堆的插入 编辑 4.堆的删除 5堆的其他操作 6代码合集 三、堆的应用 (一)堆排序(重点) (二)TOP-K问题 一、堆的概念及结构 堆的…...
领域驱动设计(DDD)与MVC架构:理念对比与架构选择
领域驱动设计(DDD)与MVC架构:理念对比与架构选择 一、架构之争的本质:业务复杂度驱动技术演进 在软件开发领域,没有银弹式的完美架构,只有适合当前业务场景的合理选择。MVC与DDD的区别本质上是业务复杂度与…...
牛客周赛:84:B:JAVA
链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 题目描述 import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class Main {public static void main(String[] args) {Scanner scanner new Scanner(S…...
【理想解法学习笔记】
目录 理想解法原理简介算法步骤属性值规范化方法代码示例 理想解法 原理简介 TOPSIS(Technique for Order Preference by Simi larity to IdealSolution)法是一种逼近理想解的排序方法。其基本的处理思路是:首先建立初始化决策矩阵,而后基于规范化后的初…...
CI/CD—Jenkins配置一次完整的jar自动化发布流程
背景: 实现设想: 要创建自动化发布,需要准备一台测试服务器提前安装好java运行所需的环境,JDK版本最好和Windows开发机器上的版本一致,在Jenkins上配置将构建好的jar上传到测试服务器上,测试服务器自动启动…...
Magento2根据图片文件包导入产品图片
图片包给的图片文件是子产品的图片,如下图:A104255是主产品的sku <?php/*** 根据图片包导入产品图片,包含子产品和主产品* 子产品是作为主图,主产品是作为附加图片*/use Magento\Framework\App\Bootstrap;include(../app/boot…...
从零开始的python学习(五)P71+P72+P73+P74
本文章记录观看B站python教程学习笔记和实践感悟,视频链接:【花了2万多买的Python教程全套,现在分享给大家,入门到精通(Python全栈开发教程)】 https://www.bilibili.com/video/BV1wD4y1o7AS/?p6&share_sourcecopy_web&v…...
OpenHarmony5.0分布式系统源码实现分析—软总线
一、引言 OpenHarmony 作为一款面向万物互联的操作系统,其分布式软总线(Distributed SoftBus)是实现设备间高效通信和协同的核心技术之一。分布式软总线通过构建一个虚拟的总线网络,使得不同设备能够无缝连接、通信和协同工作。本…...
基于SpringBoot实现旅游酒店平台功能六
一、前言介绍: 1.1 项目摘要 随着社会的快速发展和人民生活水平的不断提高,旅游已经成为人们休闲娱乐的重要方式之一。人们越来越注重生活的品质和精神文化的追求,旅游需求呈现出爆发式增长。这种增长不仅体现在旅游人数的增加上࿰…...
代码随想录算法训练营第六十一天 | 108. 冗余连接 109. 冗余连接II
108. 冗余连接 题目链接:KamaCoder 文档讲解:代码随想录 状态:AC Java代码: import java.util.*;class Main {public static int[] father;public static void main(String[] args) {Scanner scan new Scanner(System.in);int n…...
RoboVQA:机器人多模态长范围推理
23 年 11 月来自 Google Deepmind 的论文“RoboVQA: Multimodal Long-Horizon Reasoning for Robotics”。 本文提出一种可扩展、自下而上且本质多样化的数据收集方案,该方案可用于长期和中期的高级推理,与传统的狭窄自上而下的逐步收集相比,…...
TCP/IP原理详细解析
前言 TCP/IP是一种面向连接,可靠的传输,传输数据大小无限制的。通常情况下,系统与系统之间的http连接需要三次握手和四次挥手,这个执行过程会产生等待时间。这方面在日常开发时需要注意一下。 TCP/IP 是互联网的核心协议族&…...
Microsof Visual Studio Code 安装教程(中文设置)
VS Code 是一个免费的代码编辑器,可在 macOS、Linux 和 Windows作系统上运行。启动和运行 VS Code 既快速又简单。VS Code(全称 Visual Studio Code)是一款由Microsoft 推出的免费、开源、跨平台的代码编辑器,拥有强大的功能和灵活…...
python爬虫:Android自动化工具Auto.js的详细使用
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 1. Auto.js 简介2. 安装与配置2.1 安装 Auto.js2.2 安装 Python 环境2.3 安装 ADB 工具3. Python 与 Auto.js 结合3.1 通过 ADB 执行 Auto.js 脚本3.2 通过 Python 控制 Auto.js3.3 通过 Python 与 Auto.js 交互4. 常用…...
Unity DOTS从入门到精通之 自定义Authoring类
文章目录 前言安装 DOTS 包什么是Authoring1. 实体组件2. Authoring类 前言 DOTS(面向数据的技术堆栈)是一套由 Unity 提供支持的技术,用于提供高性能游戏开发解决方案,特别适合需要处理大量数据的游戏,例如大型开放世…...
linux 软件安装(上)
一、基础环境准备 1.1、安装VM 1.2、在VM上导入linux iso镜像,装好linux系统 华为centos镜像下载地址 https://mirrors.huaweicloud.com/centos/ https://mirrors.huaweicloud.com/centos/7.9.2009/isos/x86_64/ 网易centos镜像下载地址 htt…...
php虚拟站点提示No input file specified时的问题及权限处理方法
访问站点,提示如下 No input file specified. 可能是文件权限有问题,也可能是“.user.ini”文件路径没有配置对,最简单的办法就是直接将它删除掉,还有就是将它设置正确 #配置成自己服务器上正确的路径 open_basedir/mnt/qiy/te…...
【江协科技STM32】ADC数模转换器-学习笔记
ADC简介 ADC(Analog-Digital Converter)模拟-数字转换器ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁,ADC是一种将连续的模拟信号转换为离散的数字信号的设备或模块12位逐次逼近型…...
QT系列教程(20) Qt 项目视图便捷类
视频连接 https://www.bilibili.com/video/BV1XY41127t3/?vd_source8be9e83424c2ed2c9b2a3ed1d01385e9 Qt项目视图便捷类 Qt项目视图提供了一些便捷类,包括QListWidget, QTableWidget, QTreeWidget等。我们分别介绍这几个便捷类。 我们先创建一个Qt …...
git worktree的使用
git worktree 是 Git 提供的一个强大功能,允许你在同一个仓库中同时创建多个工作目录,每个目录对应一个分支,从而实现并行开发。以下是 git worktree 的常用命令和使用方法: 1. 创建新的工作目录(Worktree)…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
C++实现分布式网络通信框架RPC(2)——rpc发布端
有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...
