【Python】【进阶篇】二十一、Python爬虫的多线程爬虫
目录
- 二十一、Python爬虫的多线程爬虫
- 21.1 多线程使用流程
- 21.2 Queue队列模型
- 21.3 多线程爬虫案例
- 1) 案例分析
- 2) 完整程序
二十一、Python爬虫的多线程爬虫
网络爬虫程序是一种 IO 密集型程序,程序中涉及了很多网络 和 本地磁盘的 IO 操作,这会消耗大量的时间,从而降低程序的执行效率,而 Python 提供的多线程能够在一定程度上提升 IO 密集型程序的执行效率。
21.1 多线程使用流程
Python 提供了两个支持多线程的模块,分别是 _thread 和 threading。其中 _thread 模块偏底层,它相比于 threading 模块功能有限,因此推荐大家使用 threading 模块。 threading 中不仅包含了 _thread 模块中的所有方法,
还提供了一些其他方法,如下所示:
- threading.currentThread() 返回当前的线程变量。
- threading.enumerate() 返回一个所有正在运行的线程的列表。
- threading.activeCount() 返回正在运行的线程数量。
线程的具体使用方法如下所示:
from threading import Thread
#线程创建、启动、回收
t = Thread(target=函数名) # 创建线程对象
t.start() # 创建并启动线程
t.join() # 阻塞等待回收线程
创建多线程的具体流程:
t_list = []
for i in range(5):t = Thread(target=函数名)t_list.append(t)t.start()
for t in t_list:t.join()
除了使用该模块外,您也可以使用 Thread 线程类来创建多线程。
在处理线程的过程中要时刻注意线程的同步问题,即多个线程不能操作同一个数据,否则会造成数据的不确定性。通过 threading 模块的 Lock
对象能够保证数据的正确性。
比如,使用多线程将抓取数据写入磁盘文件,此时,就要对执行写入操作的线程加锁,这样才能够避免写入的数据被覆盖。当线程执行完写操作后会主动释放锁,继续让其他线程去获取锁,周而复始,直到所有写操作执行完毕。具体方法如下所示:
from threading import Lock
lock = Lock()
# 获取锁
lock.acquire()
wirter.writerows("线程锁问题解决")
# 释放锁
lock.release()
21.2 Queue队列模型
对于 Python 多线程而言,由于 GIL 全局解释器锁的存在,同一时刻只允许一个线程占据解释器执行程序,当此线程遇到 IO
操作时就会主动让出解释器,让其他处于等待状态的线程去获取解释器来执行程序,而该线程则回到等待状态,这主要是通过线程的调度机制实现的。
由于上述原因,我们需要构建一个多线程共享数据的模型,让所有线程都到该模型中获取数据。queue(队列,先进先出)
模块提供了创建共享数据的队列模型。比如,把所有待爬取的 URL 地址放入队列中,每个线程都到这个队列中去提取 URL。queue 模块的具体使用方法如下:
# 导入模块
from queue import Queue
q = Queue() #创界队列对象
q.put(url) 向队列中添加爬取一个url链接
q.get() # 获取一个url,当队列为空时,阻塞
q.empty() # 判断队列是否为空,True/False
21.3 多线程爬虫案例
下面通过多线程方法抓取小米应用商店(https://app.mi.com/)中应用分类一栏,所有类别下的 APP 的名称、所属类别以及下载详情页 URL。如下图所示:

抓取下来的数据 demo 如下所示:
三国杀,棋牌桌游,http://app.mi.com/details?id=com.bf.sgs.hdexp.mi
1) 案例分析
通过搜索关键字可知这是一个动态网站,因此需要抓包分析。
刷新网页来重新加载数据,可得知请求头的 URL 地址,如下所示:
https://app.mi.com/categotyAllListApi?page=0&categoryId=1&pageSize=30
其中查询参数 pageSize 参数值不变化,page 会随着页码的增加而变化,而类别 Id 通过查看页面元素,如下所示
<ul class="category-list">
<li><a class="current" href="/category/15">游戏</a></li>
<li><a href="/category/5">实用工具</a></li>
<li><a href="/category/27">影音视听</a></li>
<li><a href="/category/2">聊天社交</a></li>
<li><a href="/category/7">图书阅读</a></li>
<li><a href="/category/12">学习教育</a></li>
<li><a href="/category/10">效率办公</a></li>
<li><a href="/category/9">时尚购物</a></li>
<li><a href="/category/4">居家生活</a></li>
<li><a href="/category/3">旅行交通</a></li>
<li><a href="/category/6">摄影摄像</a></li>
<li><a href="/category/14">医疗健康</a></li>
<li><a href="/category/8">体育运动</a></li>
<li><a href="/category/11">新闻资讯</a></li>
<li><a href="/category/13">娱乐消遣</a></li>
<li><a href="/category/1">金融理财</a></li>
</ul>
因此,可以使用 Xpath 表达式匹配 href 属性,从而提取类别 ID 以及类别名称,表达式如下:
基准表达式:xpath_bds = '//ul[@class="category-list"]/li'
提取 id 表达式:typ_id = li.xpath('./a/@href')[0].split('/')[-1]
类型名称:typ_name = li.xpath('./a/text()')[0]
点击开发者工具的 response 选项卡,查看响应数据,如下所示:
{
count: 2000,
data: [
{
appId: 1348407,
displayName: "天气暖暖-关心Ta从关心天气开始",
icon: "http://file.market.xiaomi.com/thumbnail/PNG/l62/AppStore/004ff4467a7eda75641eea8d38ec4d41018433d33",
level1CategoryName: "居家生活",
packageName: "com.xiaowoniu.WarmWeather"
},
{
appId: 1348403,
displayName: "贵斌同城",
icon: "http://file.market.xiaomi.com/thumbnail/PNG/l62/AppStore/0e607ac85ed9742d2ac2ec1094fca3a85170b15c8",
level1CategoryName: "居家生活",
packageName: "com.gbtc.guibintongcheng"
},
...
...
通过上述响应内容,我们可以从中提取出 APP 总数量(count)和 APP (displayName)名称,以及下载详情页的
packageName。由于每页中包含了 30 个 APP,所以总数量(count)可以计算出每个类别共有多少页。
pages = int(count) // 30 + 1
下载详情页的地址是使用 packageName 拼接而成,如下所示:
link = 'http://app.mi.com/details?id=' + app['packageName']
2) 完整程序
完整程序如下所示:
# -*- coding:utf8 -*-
import requests
from threading import Thread
from queue import Queue
import time
from fake_useragent import UserAgent
from lxml import etree
import csv
from threading import Lock
import jsonclass XiaomiSpider(object):def __init__(self):self.url = 'http://app.mi.com/categotyAllListApi?page={}&categoryId={}&pageSize=30'# 存放所有URL地址的队列self.q = Queue()self.i = 0# 存放所有类型id的空列表self.id_list = []# 打开文件self.f = open('XiaomiShangcheng.csv','a',encoding='utf-8')self.writer = csv.writer(self.f)# 创建锁self.lock = Lock()def get_cateid(self):# 请求url = 'http://app.mi.com/'headers = { 'User-Agent': UserAgent().random}html = requests.get(url=url,headers=headers).text# 解析parse_html = etree.HTML(html)xpath_bds = '//ul[@class="category-list"]/li'li_list = parse_html.xpath(xpath_bds)for li in li_list:typ_name = li.xpath('./a/text()')[0]typ_id = li.xpath('./a/@href')[0].split('/')[-1]# 计算每个类型的页数pages = self.get_pages(typ_id)#往列表中添加二元组self.id_list.append( (typ_id,pages) )# 入队列self.url_in()# 获取count的值并计算页数def get_pages(self,typ_id):# 获取count的值,即app总数url = self.url.format(0,typ_id)html = requests.get(url=url,headers={'User-Agent':UserAgent().random}).json()count = html['count']pages = int(count) // 30 + 1return pages# url入队函数,拼接url,并将url加入队列def url_in(self):for id in self.id_list:# id格式:('4',pages)for page in range(1,id[1]+1):url = self.url.format(page,id[0])# 把URL地址入队列self.q.put(url)# 线程事件函数: get() -请求-解析-处理数据,三步骤def get_data(self):while True:# 判断队列不为空则执行,否则终止if not self.q.empty():url = self.q.get()headers = {'User-Agent':UserAgent().random}html = requests.get(url=url,headers=headers)res_html = html.content.decode(encoding='utf-8')html=json.loads(res_html)self.parse_html(html)else:break# 解析函数def parse_html(self,html):# 写入到csv文件app_list = []for app in html['data']:# app名称 + 分类 + 详情链接name = app['displayName']link = 'http://app.mi.com/details?id=' + app['packageName']typ_name = app['level1CategoryName']# 把每一条数据放到app_list中,并通过writerows()实现多行写入app_list.append([name,typ_name,link])print(name,typ_name)self.i += 1# 向CSV文件中写入数据self.lock.acquire()self.writer.writerows(app_list)self.lock.release()# 入口函数def main(self):# URL入队列self.get_cateid()t_list = []# 创建多线程for i in range(1):t = Thread(target=self.get_data)t_list.append(t)# 启动线程t.start()for t in t_list:# 回收线程 t.join()self.f.close()print('数量:',self.i)if __name__ == '__main__':start = time.time()spider = XiaomiSpider()spider.main()end = time.time()print('执行时间:%.1f' % (end-start))
运行上述程序后,打开存储文件,其内容如下:
在我们之间-单机版,休闲创意,http://app.mi.com/details?id=com.easybrain.impostor.gtx粉末游戏,模拟经营,http://app.mi.com/details?id=jp.danball.powdergameviewer.bnn三国杀,棋牌桌游,http://app.mi.com/details?id=com.bf.sgs.hdexp.mi腾讯欢乐麻将全集,棋牌桌游,http://app.mi.com/details?id=com.qqgame.happymj快游戏,休闲创意,http://app.mi.com/details?id=com.h5gamecenter.h2mgc皇室战争,战争策略,http://app.mi.com/details?id=com.supercell.clashroyale.mi地铁跑酷,跑酷闯关,http://app.mi.com/details?id=com.kiloo.subwaysurf
...
...
相关文章:
【Python】【进阶篇】二十一、Python爬虫的多线程爬虫
目录 二十一、Python爬虫的多线程爬虫21.1 多线程使用流程21.2 Queue队列模型21.3 多线程爬虫案例1) 案例分析2) 完整程序 二十一、Python爬虫的多线程爬虫 网络爬虫程序是一种 IO 密集型程序,程序中涉及了很多网络 和 本地磁盘的 IO 操作,这会消耗大…...
Python从入门到精通14天(eval、literal_eval、exec函数的使用)
eval、literal_eval、exec函数的使用 eval函数literal_eval函数exec函数三者的区别 eval函数 eval()是Python中的内置函数,它可以将一个字符串作为参数,并将该字符串作为Python代码执行。它的语法格式为:eval(expression,globalsNone,locals…...
队列的基本操作(C语言链表实现)初始化,入队,出队,销毁,读取数据
文章目录 前言一、队列基本变量的了解二、队列的基本操作2.1队列的初始化(QueueInit)2.2入队(QueuePush)2.3判断是否为空队(QueueEmpty)2.4出队(QueuePop)2.5队列的队头数据…...
项目支付接入支付宝【沙箱环境】
前言 订单支付接入支付宝,使用支付宝提供的沙箱机制模拟为订单付款。我这里主要记录一下沙箱环境如何接入到系统中,具体细节的实现。按照官方文档来就可以了。 1、使用步骤 这里有几个重要数据要拿到,一个是支付宝的公钥和私钥,…...
程序员应该如何提升自己
作为一名程序员,以下是您可以考虑的一些方法来提高自己的技能和知识: 深入学习编程语言和相关工具:了解您使用的编程语言和相关工具的基本原理和高级特性,以便更好地理解其工作方式并更有效地使用它们。 刻意练习:刻意…...
全球上线!ABB中国涡轮增压器分拆 – 数据清理阶段完成
ABB是数字行业的技术前沿者,拥有四项主营业务:电气化,工业自动化,运动控制以及机器人和离散自动化。ABB总部位于瑞士苏黎世,业务遍及100多个国家,拥有约105,000名员工。2021年,该公司…...
手写简易 Spring(三)
文章目录 三. 手写简易 Spring(三)1. Bean 对象初始化和销毁方法1. XML 添加 init-method 与实现 InitializingBean 接口注册初始化2. XML 添加 destroy-method 与实现 DisposableBean 接口注册销毁3. DefaultSingletonBeanRegistry 优秀的解耦方法 2. 定…...
设计模式-看懂UML类图和时序图
这里不会将UML的各种元素都提到,只讲类图中各个类之间的关系; 能看懂类图中各个类之间的线条、箭头代表什么意思后,也就足够应对 日常的工作和交流; 同时,应该能将类图所表达的含义和最终的代码对应起来; 1…...
2023年全国最新安全员精选真题及答案57
百分百题库提供安全员考试试题、建筑安全员考试预测题、建筑安全员ABC考试真题、安全员证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 101.(单选题)遇有()及以上强风、浓雾等…...
数字图像处理基础
图像增强:不论方法,只要能够得到较好的图像即可 图像复原:找到图像退化的原因,把噪声过滤得到较好的图像 RGB——HSI(色调 饱和度 亮度)彩色图像处理需要用到灰度图像处理 直方图均衡,灰度概率密度函数接近均匀分布&a…...
onnx手动操作
使用onnx.helper可以进行onnx的制造组装操作: 对象描述ValueInfoProto 对象张量名、张量的基本数据类型、张量形状算子节点信息 NodeProto算子名称(可选)、算子类型、输入和输出列表(列表元素为数值元素)GraphProto对象用张量节点和算子节点组成的计算图对象ModelP…...
虚拟机安装Centos7,ping不通百度
虚拟机安装Centos7,ping不通百度 一、虚拟机网络配置 网络适配器选择桥接模式,不勾选复制物理网络连接状态。 同时虚拟机使用默认配置都是桥接。 二、配置静态IP 1、首先,查看宿主机的IP和网关 2、配置静态ip的文件地址及修改命令如下&…...
leetCode算法第一天
今天开始刷算法题,提升自己的算法思维和代码能力,加油! 文章目录 无重复字符的最长子串最长回文子串N形变换字符串转换整数 无重复字符的最长子串 leetCode链接 https://leetcode.cn/problems/longest-substring-without-repeating-characte…...
怎么将太大的word文档压缩变小,3个高效方法
怎么将太大的word文档压缩变小?word文档是我们在办公中使用较多的文件格式之一,相信小伙伴们会遇到这样的问题,编辑完成word文档之后发现,编辑完的文档体积太大了,无论是发送给客户还是上传到邮箱中都不方便࿰…...
mvc+动态代理
不使用MVC的时候系统存在的缺陷 一个Servlet都负责了那些工作? 负责了接收数据负责了核心的业务处理负责了数据表中的CRUD负责了页面的数据展示… 分析银行转账项目存在那些问题? 代码的复用性太差。(代码的重用性太差) 因为没…...
vue-cli(vue脚手架方式搭建)
1.首先安装node前端环境,可以帮助我们去下载其他的组件 下载完成后,去自己的电脑找到node的文件路径,复制去配置环境变量,在path中配 环境搭配完成后,在cmd中进行测试 ,输入一下两个命令进行测试 2.在hbuilderX中创建一个vue-cli项目(标准的前段项目) 3.组件路由 (1)安装 v…...
CentOS 安装 Docker
文章目录 一、更新yum源二、查看docker是否曾经安装过三、安装所需要的软件包四、设置yum源(也可以设置成国内的阿里源等)五、查看docker版本六、.安装docker (默认全部选y)七、查看docker安装版本八、docker 启动/停止/重启/开机…...
别搞了 软件测试真卷不动了...
内卷可以说是 2022年最火的一个词了。2023 年刚开始,在很多网站看到很多 软件测试的 2022 年度总结都是:软件测试 越来越卷了(手动狗头),2022 年是被卷的一年。前有几百万毕业生虎视眈眈,后有在职人员带头“…...
OJ刷题 第十二篇
21308 - 特殊的三角形 时间限制 : 1 秒 内存限制 : 128 MB 有这样一种特殊的N阶的三角形,当N等于3和4时,矩阵如下: 请输出当为N时的三角形。 输入 输入有多组数据,每行输入一个正整数N,1<N<100 输出 按照给出…...
【计算机专业应届生先找培训还是先找个工作过渡一下?】
计算机专业应届生先找培训还是先找个工作过渡一下? 计算机应届生是先培训还是先工作,这个问题应该困扰了很多专业技能一般的同学,尤其是学历方面还没有优势的普通本专科院校。都说技术与学历优秀的人进大厂,技术一般学历优秀的人能…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
