当前位置: 首页 > news >正文

【排序】快速排序实现

目录

一、快速排序是什么?

二、左右指针法

1.实现原理

2.代码如下:

三、挖坑法

1.实现原理

2.代码如下: 

四、前后指针法

1.实现原理

2.代码如下:

五、三数取中

1.实现思想

2.代码如下:

 3.使用方法

总结



前言

        快排是公认的排序效率之王,加上三数取中小区间优化更是无人能敌。


一、快速排序是什么?

        快排分为三种实现方式:

        ①左右指针法

        ②挖坑法

        ③前后指针法

        其中左右指针与挖坑法实现原理差不多一样:(只是挖坑法多创建一个临时变量存储坑中的数据)它们俩都是选大的的通过自己的方式放在后面,选出小的通过自己的方式放前面,通过递归就可将整个数组进行排序。

        前后指针法同样是选大的放后面,选小的放前面,但是与上面两个不同的是它只从一头开始遍历。

二、左右指针法

1.实现原理

       ① 定义两个指针,一个从左边遍历,一个从右边遍历。

       ② 定义一个key值用来做比较的基准值。

       ③ 如果key是最左边的值,那么就让right先向左找小值,反之,就让left先找大值。

        目的:在left与right相遇时,在与key值交换时能够交换大值(小值),否则会出现数据错误。

       ④ 假定key值定义为最左边的数字,

        right向左走找比key值大的数据,找到后停下,

        left向右走找比key值小的数据,找到后停下,

        此时交换left与right对应的值,循环往复直至left与right相遇。

       ⑤ 相遇后,将相遇点与keyi对应的数据进行交换,此时数组将会达到key左边的数字都小于key,右边的数字都大于key,后续通过递归可实现整个数组的排序。

2.代码如下:

#include <stdio.h>void swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}
// 左右指针法
void QuickSort1(int* arr, int begin, int end)
{if (begin >= end){return;}int left = begin;int right = end;int keyi = left;while (left < right){// right向左找小while (left < right && arr[right] >= arr[keyi]){right--;}while (left < right && arr[left] <= arr[keyi]){left++;}// key的大值与小值进行换位swap(&arr[left], &arr[right]);}// 左右指针相遇,与key换位int meeti = left;swap(&arr[meeti], &arr[keyi]);QuickSort1(arr, begin, meeti - 1);QuickSort1(arr, meeti + 1, end);
}
int main()
{int arr[] = { 5,3,6,9,8,7,2,0,1,4 }; size_t len = sizeof(arr) / sizeof(arr[0]);QuickSort1(arr, 0, len - 1);return 0;
}

三、挖坑法

1.实现原理

        挖坑法与左右指针法大致相同。

        ① 选出一个key值,并将其所在的位置定为坑(坑可被覆盖 -> 放数据,坑中的数据被保存在了key中)

        ② 定义两个指针,一个从左边遍历,一个从右边遍历。

        ③同左右指针法相同,

如果key是最左边的值,那么就让right先向左找小值,反之,就让left先找大值。

        目的:在left与right相遇时,在与key值交换时能够交换大值(小值),否则会出现数据错误。

        ④ 假定key值定义为最左边的数字:

        right找到比key值大的数据停下,将此数入坑,同时right所在的位置变为新坑;

        left向右走找比key值小的数据,找到后停下,将此数入坑,同时left所在的位置变为新坑;

        循环此过程直至两指针相遇。

        ⑤ 将key值入坑,此时数组将会达到key左边的数字都小于key,右边的数字都大于key,后续通过递归可实现整个数组的排序。

2.代码如下: 

// 挖坑法
void QuickSort2(int* arr, int begin, int end)
{if (begin >= end){return;}int left = begin;int right = end;int key = arr[left];int pivot = left;while (left < right){// right向左找小while (left < right && arr[right] >= key){right--;}// 入坑,更新坑位arr[pivot] = arr[right];pivot = right;// left向右找大while (left < right && arr[left] <= key){left++;}arr[pivot] = arr[left];pivot = left;}// 相遇,key值入坑arr[pivot] = key;QuickSort2(arr, begin, pivot - 1);QuickSort2(arr, pivot + 1, end);
}// 挖坑法
void QuickSort2(int* arr, int begin, int end)
{if (begin >= end){return;}int left = begin;int right = end;int key = arr[left];int pivot = left;while (left < right){// right向左找小while (left < right && arr[right] >= key){right--;}// 入坑,更新坑位arr[pivot] = arr[right];pivot = right;// left向右找大while (left < right && arr[left] <= key){left++;}arr[pivot] = arr[left];pivot = left;}// 相遇,key值入坑arr[pivot] = key;QuickSort2(arr, begin, pivot - 1);QuickSort2(arr, pivot + 1, end);
}
int main()
{int arr[] = { 5,3,6,9,8,7,2,0,1,4 }; size_t len = sizeof(arr) / sizeof(arr[0]);QuickSort1(arr, 0, len - 1);return 0;
}

四、前后指针法

1.实现原理

        ① 定义两个指针,一前(cur)一后(prev)。

        ② 定义一个key值,用来作为单趟排序的基准值。

        ② 让前面的指针继续向前遍历,如果找到比key值小的,++prev后与其交换。

        ③ 重复②直至cur到达数组末尾,交换prev与keyi对应的数据。

        ④ 此时数组将会达到key左边的数字都小于key,右边的数字都大于key,后续通过递归可实现整个数组的排序。

2.代码如下:
 

// 前后指针法
void QuickSort3(int* arr, int begin, int end)
{if (begin >= end){return;}int left = begin;int right = end;int key = arr[left];int prev = left;int cur = prev + 1;while (cur <= end){if (arr[cur] < key && ++prev != cur)// 减少不必要的swap{swap(&arr[prev], &arr[cur]);}++cur;}swap(&arr[prev], &arr[begin]);QuickSort3(arr, begin, prev - 1);QuickSort3(arr, prev + 1, end);
}int main()
{int arr[] = { 5,3,6,9,8,7,2,0,1,4 }; size_t len = sizeof(arr) / sizeof(arr[0]);QuickSort3(arr, 0, len - 1);return 0;
}

五、三数取中

1.实现思想

        当待排序数组本来是逆序时,快排效率将降到最低,为O(N2),每次都许哟啊对每个数进行交换位置2次,所以产生了三数去中的方法:

        取得数组最开始、最末尾、最中间中的中间值来平衡key值。

2.代码如下:

// 三数取中
int GetMidIndex(int* arr, int begin, int end)
{int mid = (end - begin) / 2 + begin;if (arr[begin] < arr[end]){// begin < end < midif (arr[mid] > arr[end]){return end;}// mid < begin < endelse if (arr[mid] < arr[begin]){return begin;}// begin < mid < endelse{return mid;}}// end < beginelse{// mid < end < beginif (arr[mid] < arr[end]){return end;}//end < begin < midelse if(arr[mid] > arr[begin]){return begin;}else{return mid;}}
}

 3.使用方法

        在取key值时仍可继续取left位置的值,但是在此之前做一次交换即可。

int index = GetMidIndex(arr, begin, end);swap(&arr[index], &arr[left]);int key = arr[left];

总结

        抓住快排的思想要点,加上调试即可快速实现出排序算法。

相关文章:

【排序】快速排序实现

目录 一、快速排序是什么&#xff1f; 二、左右指针法 1.实现原理 2.代码如下&#xff1a; 三、挖坑法 1.实现原理 2.代码如下&#xff1a; 四、前后指针法 1.实现原理 2.代码如下&#xff1a; 五、三数取中 1.实现思想 2.代码如下&#xff1a; 3.使用方法 总结…...

YOLOv5/v7 Flask Web 车牌识别 | YOLOv7 + EasyOCR 实现车牌识别

YOLOv7 Flask Web 车牌识别图片效果展示 本篇博文只包含源码以及使用方式,目前不同提供详细开发教程。 YOLOv7 Flask Web 车牌识别视频效果展示 YOLOv7 + EasyOCR 实现车牌识别 什么是Flask? 简介 Flask是一个轻量级的可定制框架,使用Python语言编写,较其他同类型框架更…...

【Opencv实战】几十年前的Vlog火了:黑白老照片如何上色?这黑科技操作一定要知道,复原度超高,竟美的出奇~(图像修复神级代码)

导语 哈喽大家好呀&#xff01;我是每天疯狂赶代码的木木子吖&#xff5e;情人节快乐呀&#xff01; 所有文章完整的素材源码都在&#x1f447;&#x1f447; 粉丝白嫖源码福利&#xff0c;请移步至CSDN社区或文末公众hao即可免费。 我们都知道&#xff0c;有很多经典的老照片…...

React源码分析(一)Fiber

前言 本次React源码参考版本为17.0.3。 React架构前世今生 查阅文档了解到&#xff0c; React16.x是个分水岭。 React15及之前 在16之前&#xff0c;React架构大致可以分为两层&#xff1a; Reconciler&#xff1a; 主要职责是对比查找更新前后的变化的组件&#xff1b;R…...

小樽 C++指针—— (壹) 指针变量

(壹) 指针变量 一、指针的概念与定义 二、给指针变量p赋值 三、指针变量的的、-运算 四、无类型指针 五、多重指针 C (壹) 指针变量 小明想把从李华家借来的书——《CCF中学生计算机程序设计》还给李华&#xff0c;但李华不在家&#xff0c;于是把书放到书架第3层的最右边…...

java 代码块 万字详解

概述 : 特点 : 格式 : 情景 : 细节 : 演示 : 英文 : //v&#xff0c;新版编辑器无手动添加目录的功能&#xff0c;PC端阅读建议通过侧边栏进行目录跳转&#xff1b;移动端建议用PC端阅读。&#x1f602;一、概述 :代码块&#xff0c;也称为初始化块&#xff0c;属于类中的成员&…...

杂项-图片隐写

图片隐写的常见隐写方法&#xff1a; 三基色&#xff1a;RGB&#xff08;Red Green Blue&#xff09; 图片文件隐写 1.Firework 使用winhex打开文件时会看到文件头部中包含firework的标识&#xff0c;通过firework可以找到隐藏图片。 使用场景&#xff1a;查看隐写的图片文件…...

【高性价比】初学者入门吉他值得推荐购买的民谣单板吉他品牌—VEAZEN费森吉他

“在未知的世界里&#xff0c;我们是一群不疲不倦的行者&#xff0c;执念于真善美&#xff0c;热衷于事物的极致。我们抽丝剥茧&#xff0c;不断地打败自己&#xff0c;超越自己&#xff0c;我们无所畏惧终将成为巨人。”这是VEAZEN吉他官网首页上很明显的一段话&#xff0c;也…...

2023年浙江交安安全员考试题库及答案

百分百题库提供交安安全员考试试题、交安安全员考试真题、交安安全员证考试题库等&#xff0c;提供在线做题刷题&#xff0c;在线模拟考试&#xff0c;助你考试轻松过关。 50.根据《建设工程安全生产管理条例》第65条规定&#xff0c;施工单位有下列&#xff08;&#xff09;行…...

【新】华为OD机试 - 跳格子(Python)

跳格子 题目 地上共有 N 个格子,你需要跳完地上所有的格子, 但是格子间是有强依赖关系的,跳完前一个格子后, 后续的格子才会被开启,格子间的依赖关系由多组 steps 数组给出, steps[0] 表示前一个格子, steps[1] 表示 steps[0] 可以开启的格子: 比如 [0,1] 表示从跳完第…...

乡村能做社区团购吗?怎么做?我走访调查后发现机会很大

乡村能做社区团购吗&#xff1f;怎么做&#xff1f;我走访调查后发现机会很大#深度触网 #社区团购 #乡村振兴##乡村旅游##县域经济##市场经济##农文旅产业振兴研究院#乡村旅游能带动农产品加工业、服务业、商贸业等相关联产业的发展 乡村能做社区团购吗&#xff1f;怎么做&…...

态路小课堂丨下一代数据中心100G接口第二篇——SFP-DD封装

100G光模块根据封装模式可分为QSFP28、CXP、CFP、CFP2、FCP4、DSFP和SFP-DD等。态路小课堂之前已经大量介绍了相关内容&#xff08;。 态路小课堂丨下一代数据中心100G接口——DSFP态路小课堂丨100G解决方案-425G NRZ光模块态路小课堂丨什么是100G QSFP28单波光模块&#xff1f…...

状态栏和导航栏高度获取

/*** 获取导航栏高度*/public static int getNavigationBarHeight(Context context){int navigationBarHeight 0;int resourceId context.getResources().getIdentifier("navigation_bar_height", "dimen", "android")if (resourceId > 0) {…...

插曲:第一桶金 1w 的来由

因为前天跟同事聊天&#xff0c;发现有个比较严重的认知&#xff0c;就是关于赚钱思维。 同事反馈说工作十来年&#xff0c;却没有接过私活&#xff0c;这里话分两头&#xff0c;有可能私 活钱少&#xff0c;但他给我的理由是&#xff1a;私活太麻烦&#xff0c;有时候不敢接&a…...

中国甲基异丁基甲醇行业头部企业市场占有率及排名调研报告

内容摘要 本文调研和分析全球甲基异丁基甲醇发展现状及未来趋势&#xff0c;核心内容如下&#xff1a; &#xff08;1&#xff09;全球市场总体规模&#xff0c;分别按销量和按收入进行了统计分析&#xff0c;历史数据2018-2022年&#xff0c;预测数据2023至2029年。 &#xf…...

streamlit自定义组件教程和组件开发环境配置

About create your own component&#xff1a; you can follow this tutorial streamlit tutorial 重要&#xff01;以下步骤都是在教程的基础上更改的。这个教程做的很棒。 Component development environment configuration&#xff1a; 根据文章 https://streamlit-com…...

Windows CMD常用命令

目录 【打开CMD命令】 【网络测试命令】 ipconfig------查看本机网卡信息 ping------测试网络是否通畅 tracert------追踪路由&#xff0c;也可以用来查看网络连通性 telnet------查看目的主机ip的端口号是否开放 tcping------查看目的主机ip的端口号是否开放 【关于路…...

ChIP-seq 分析:数据比对(3)

读取 reads&#xff08;二者含义相同&#xff0c;下文不做区分&#xff09;1. ChIPseq reads 比对 在评估读取质量和我们应用的任何读取过滤之后&#xff0c;我们将希望将我们的读取与基因组对齐&#xff0c;以便识别任何基因组位置显示比对读取高于背景的富集。 由于 ChIPseq…...

并非从0开始的c++之旅 day2

并非从0开始的c之旅 day2一、变量1、 变量名的本质二、程序的内存分区模型1、内存分区运行之前运行之后三、栈区注意事项四、堆区1、堆区使用2、堆区注意事项五、全局变量静态变量1、静态变量2、全局变量六、常量1、全局const常量2、局部const常量七、字符串常量一、变量 既能…...

Linux进阶(Shell编程学习一)

由于shell脚本在java项目运维方面极其重要&#xff0c;比如服务的启动脚本&#xff0c;日志的分割脚本&#xff0c;文件的管理脚本大多都是shell脚本去实现的。所以作为java开发者懂linux的基本命令&#xff0c;会基本的shell编程是必要的。 Shell 是一个用 C 语言编写的程序&…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题

【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要&#xff1a; 近期&#xff0c;在使用较新版本的OpenSSH客户端连接老旧SSH服务器时&#xff0c;会遇到 "no matching key exchange method found"​, "n…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...