猫狗训练集训练报错:Failed to find data adapter that can handle input
这里写自定义目录标题
Jupyter Notebook6.5.4
tensorflow 2.12.0
pillow 9.5.0
numpy 1.23.5
keras 2.12.0
报错详细内容:
ValueError: Failed to find data adapter that can handle input: (<class ‘tuple’> containing values of types {“<class ‘keras.preprocessing.image.DirectoryIterator’>”}), <class ‘NoneType’>
from keras.preprocessing.image import ImageDataGenerator
train_datagen=ImageDataGenerator(rescale=1./255)
training_set=train_datagen.flow_from_directory('catsdogs/train/',target_size=(50,50),batch_size=32,class_mode='binary'),
print(training_set)```
from keras.models import Sequential
from keras.layers import Conv2D,MaxPool2D,Flatten,Densemodel=Sequential()
#卷积层
model.add(Conv2D(32,(3,3),input_shape=(50,50,3),activation='relu'))
#池化层
model.add(MaxPool2D(pool_size=(2,2)))
#卷积层
model.add(Conv2D(32,(3,3),input_shape=(50,50,3),activation='relu'))
#池化层
model.add(MaxPool2D(pool_size=(2,2)))#flattening layer
model.add(Flatten())#FC layer
model.add(Dense(units=128,activation='relu'))#Dog or Cat?
model.add(Dense(units=1,activation='sigmoid'))
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
model.summary()
model.fit(training_set,epochs=25)

经过搜索了解,原因是’flow_from_directory‘方法返回的是一个元组,而不是一个DirectoryIterator对象。这个元组只包含一个DirectoryIterator对象和一个空对象。
原因:
是keras和tensorflow的版本问题,看学习资料使用的是旧版本,运行没问题。
解决办法1:
可以把keras和tensorflow的版本降低,可以自行搜索低版本的keras和tensorflow,网上有看到keras 2.2.5版本是可以实现的。
pip install keras==2.2.5,如果不能直接安装则先把原来的版本删除,再重新安装。
解决办法2:
直接选择元组里面的对象
from keras.preprocessing.image import ImageDataGenerator
train_datagen=ImageDataGenerator(rescale=1./255)
training_set=train_datagen.flow_from_directory('catsdogs/train/',target_size=(50,50),batch_size=32,class_mode='binary'),
**print(training_set[0])**```
from keras.models import Sequential
from keras.layers import Conv2D,MaxPool2D,Flatten,Dense
model=Sequential()
#卷积层
model.add(Conv2D(32,(3,3),input_shape=(50,50,3),activation='relu'))
#池化层
model.add(MaxPool2D(pool_size=(2,2)))
#卷积层
model.add(Conv2D(32,(3,3),input_shape=(50,50,3),activation='relu'))
#池化层
model.add(MaxPool2D(pool_size=(2,2)))#flattening layer
model.add(Flatten())#FC layer
model.add(Dense(units=128,activation='relu'))#Dog or Cat?
model.add(Dense(units=1,activation='sigmoid'))
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
model.summary()
model.fit(training_set[0],epochs=25)

把"training_set"修改为“training_set[0]”,修改之后运行正常!
相关文章:
猫狗训练集训练报错:Failed to find data adapter that can handle input
这里写自定义目录标题 Jupyter Notebook6.5.4 tensorflow 2.12.0 pillow 9.5.0 numpy 1.23.5 keras 2.12.0 报错详细内容: ValueError: Failed to find data adapter that can handle input: (<class ‘tuple’> containing values of types {“<class ‘k…...
中国网络安全人才需求
如果你是一个想要入门网络安全行业的小白、如果你是网络安全专业在读的大学生、如果你是正在找工作的新手,那么这篇文章你一定要仔细看。毕竟知己知彼百战百胜,知道行业的人才需求才能更好得发挥自己的优势。 当你打开BOSS直聘、拉钩等招聘网站…...
设计模式之组合模式
目录 1、组合模式的定义 2、组合模式例子 3、组合模式实现 3.1 组合模式的结构 3.2 组合模式的分类 3.3 组合模式代码实现(透明组合模式) 4、组合模式的优点 5、组合模式使用场景 1、组合模式的定义 组合模式又名部分整体模式,是用于把…...
计算机基础书籍
一操作系统 二常见问题总结 1.操作系统的特征? 并发、共享、虚拟、异步性 2.进程阻塞与唤醒的条件 等待 I/O 操作完成请求系统资源失败等待信号量或事件等待子进程结束被高优先级进程抢占 3.如何避免死锁? 1、避免资源竞争 2、破坏循环等待条件 3、优…...
保龄球游戏的获胜者、找出叠涂元素----2023/4/30
保龄球游戏的获胜者----2023/4/30 给你两个下标从 0 开始的整数数组 player1 和 player2 ,分别表示玩家 1 和玩家 2 击中的瓶数。 保龄球比赛由 n 轮组成,每轮的瓶数恰好为 10 。 假设玩家在第 i 轮中击中 xi 个瓶子。玩家第 i 轮的价值为: …...
jQuery事件
1. jQuery事件注册 单个事件注册 语法: element.事件(function(){}) eg:$(“div”).click(function(){ 事件处理程序 }) 其他事件和原生基本一致。比如mouseover、mouseout、blur、focus、change、keydown、keyup、resize、scroll 等 <!DOCTYP…...
初识SpringCloud
一、软件架构演进 单体架构 垂直架构 分布式架构 SOA架构 微服务架构 二、微服务架构 2.1 微服务理念 "微服务”一词源 于 Martin Fowler的名为 Microservices的博文,可以在他的官方博客上找到http://martinfowler.com/articles/microservices.html微服务是系统架构上…...
安装java配置
目录 安装JDK 编辑 环境变量配置 3、检验环境变量配置 二、安装tomcat 验证Tomcat配置是否成功 三、安装Mysql 一、安装 二、卸载 四、安装Maven 安装JDK 点击更改将C直接给为F即可。 点击确定后进行安装,安装完以后会提示安装JRE; 检测是否已经安装JDK的…...
KBO的选秀会有哪些规定和流程`棒球7号位
KBO(韩国职业棒球联盟)的选秀会有以下规定和流程: 1. 选秀对象:KBO的选秀会主要面向年满18岁及以上的高中和大学生,以及海外球员和自由球员。KBO的球队可以在选秀会中挑选所需的球员,每个球队有一定数量的选…...
男子订民宿被毁约5个家庭漂泊街头 房东:住满了,没办法
据媒体报道,5月1日,一位叫做诸先生的消费者和朋友们提前在平台上预订了五一假期前往青岛金沙滩地中海两天的别墅民宿,并支付了房款9600元。 但是当他们到达目的地前一个半小时联系房东时,却发现联系不上人。到达指定地点后&#x…...
Vue快速入门,常用指令,生命周期
Vue常用指令 案例: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"…...
【热门框架】Mybatis-Plus入门介绍看这一篇文章就足够了
MyBatis-Plus 是在 MyBatis 的基础上进行了封装,提供了更加便捷的开发方式,具有简化开发、提高效率等优点。以下是 MyBatis-Plus 的一些特点和用法: 通用 CRUD 操作:MyBatis-Plus 提供了通用的 CRUD 接口,可以直接调用…...
Node【Node.js 20】新特性
文章目录 🌟前言🌟Node.js 20: 一次重要的升级和改进🌟Internationalization API Update🌟端口管理器🌟字符串处理🌟 更好的调试工具🌟 Crypto模块的更新🌟总结🌟写在最后…...
前端程序员的职业发展规划与路线——ChatGPT的回答
文章目录 一、前端程序员的职业规划是?回答1: 作为一个前端开发程序员,您的职业发展路线可能如下:回答2:作为前端开发程序员,您的职业发展路线可能如下:回答3: 你的职业发展路线可能…...
AlgoC++第八课:手写BP
目录 手写BP前言1. 数据加载2. 前向传播3. 反向传播总结 手写BP 前言 手写AI推出的全新面向AI算法的C课程 Algo C,链接。记录下个人学习笔记,仅供自己参考。 本次课程主要是手写 BP 代码 课程大纲可看下面的思维导图 1. 数据加载 我们首先来实现下MNIST…...
【Java笔试强训 27】
🎉🎉🎉点进来你就是我的人了博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔🤺🤺🤺 目录 一、选择题 二、编程题 🔥 不用加…...
java紫砂壶交易购物系统 mysql
网络紫砂壶可充通过色彩、图片、说明、设置动画加强了产品了宣传,大大达到了陶瓷业的“色型”要求。实现产品管理方便,起到立竿见影的效果,不用因为更改菜色而重新印刷。只要在后台鼠标轻轻一点,全线马上更新。采用B/S模式&#x…...
7-4 多态练习-计算面积
定义三个类,父类(抽象类)GeometricObject代表几何形状,子类Circle代表圆形,子类Rectangle代表矩形。具体属性和方法如下: 父类 (抽象类)GeometricObject 属性: private String color; private S…...
很佩服的一个Google大佬,离职了。。
这两天,科技圈又有一个突发的爆款新闻相信不少同学都已经看到了。 那就是75岁的计算机科学家Geoffrey Hinton从谷歌离职了,从而引起了科技界的广泛关注和讨论。 而Hinton自己也证实了这一消息。 提到Geoffrey Hinton这个名字,对于一些了解过…...
【Python习题集1】Python 语言基础知识
python习题 一、实验内容二、实验总结 一、实验内容 1、运用输入输出函数编写程序,将华氏温度转换成摄氏温度。换算公式:C(F-32)*5/9,其中C为摄氏温度,F为华氏温度。 (1)源代码: ffloat(input(输入华氏温…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
Java数组Arrays操作全攻略
Arrays类的概述 Java中的Arrays类位于java.util包中,提供了一系列静态方法用于操作数组(如排序、搜索、填充、比较等)。这些方法适用于基本类型数组和对象数组。 常用成员方法及代码示例 排序(sort) 对数组进行升序…...
云原生安全实战:API网关Envoy的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口,负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...
