当前位置: 首页 > news >正文

【图像分割】【深度学习】Windows10下f-BRS官方代码Pytorch实现

【图像分割】【深度学习】Windows10下f-BRS官方代码Pytorch实现

提示:最近开始在【图像分割】方面进行研究,记录相关知识点,分享学习中遇到的问题已经解决的方法。


文章目录

  • 【图像分割】【深度学习】Windows10下f-BRS官方代码Pytorch实现
  • 前言
  • f-BRS模型运行环境安装
    • 1.下载源码并安装环境
    • 2.下载数据集和模型权重
    • 3.运行f-BRS代码
    • 4.训练f-BRS的模型
    • 5.评估f-BRS的模型
  • 总结


前言

f-BRS是由三星莫斯科人工智能中心的Konstantin Sofiiuk等人在《f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [CVPR 2020]》【论文地址】一文中提出的模型,是一种新颖的反向传播优化方案,该方案可在网络的中间特征上运行,并且只需要对网络的一小部分进行正向和反向传递。
在详细解析f-BRS网络之前,首要任务是搭建f-BRS【Pytorch-demo地址】所需的运行环境,并模型完成训练和测试工作,展开后续工作才有意义。


f-BRS模型运行环境安装

1.下载源码并安装环境

在Windows10环境下装anaconda环境,方便搭建专用于f-BRS模型的虚拟环境,所有依赖包都安装在这个虚拟环境下。

# 创建虚拟环境
conda create -n fbrs python=3.7
# 查看新环境是否安装成功
conda env list
# 激活mivos虚拟环境
activate fbrs 

【安装合适的pytorch和torchvision(GPU版)】 pytorch版本>1.4.0就可以。

# 安装合适的pytorch和torchvision
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117

可能遇到以下问题:

解决流程:

python -m ensurepip
easy_install pip
python -m pip install --upgrade pip

下载源码,在requirements.txt所在目录下执行命令,安装所需的第三方包:

pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt

查看所有安装的包

# 查看所有安装的包
pip list
conda list

2.下载数据集和模型权重

在 SBD 数据集上训练所有模型,然后在 GrabCut、Berkeley、DAVIS、SBD 和 COCO_MVal 数据集上对其进行评估。

数据集描述下载地址
SBD8498张图像共20172个实例用于训练;2857张图像共6671个实例用于测试百度网盘[p3rl]
Grab Cut50 张图像,每张图像一个对象GrabCut.zip (11 MB)
Berkeley96 张图片,100 个实例Berkeley.zip (7 MB)
DAVIS345 张图片,每张图片有一个对象DAVIS.zip (43 MB)
COCO_MVal800 个图像和800 个实例COCO_MVal.zip (127 MB)

源码为交互方式拆分提供具有不同主干的训练模型。

Backbone训练集下载地址
ResNet-34SBDresnet34_dh128_sbd.pth(89 MB)
ResNet-50SBDresnet50_dh128_sbd.pth(120 MB)
ResNet-101SBDresnet101_dh256_sbd.pth(223 MB)
HRNetV2-W18+OCRSBDhrnet18_ocr64_sbd.pth(39 MB)
HRNetV2-W32+OCRSBDhrnet32_ocr128_sbd.pth(119 MB)
ResNet-50COCO+LVISresnet50_dh128_lvis.pth(120 MB)
HRNetV2-W32+OCRCOCO+LVIShrnet32_ocr128_lvis.pth(119 MB)

修改config.yml文件上数据集的存放位置和源代码的提供的权重存放位置。

这里博主提供的SBD数据集需要进一步解压data目录下的benchmark.tgz,然后再找到dataset文件夹,这才是训练f-BRS所需的SBD数据集。

3.运行f-BRS代码

# --gpu 序号 --limit-longest-size 图片大小(默认800) --cpu 仅用cpu
python3 demo.py --checkpoint=<模型存放地址>--gpu=0
# eg:python demo.py --checkpoint=weights/resnet34_dh128_sbd.pth --gpu=0 --limit-longest-size=400

4.训练f-BRS的模型

# ResNet-34 model
# --gpus=0,1 多GPU --workers=4线程数 win下是0 
python train.py models/sbd/r34_dh128.py --gpus=0 --workers=0 --exp-name=first-try# ResNet-50 model
python train.py models/sbd/r50_dh128.py --gpus=0 --workers=0 --exp-name=first-try# ResNet-101 model
python train.py models/sbd/r101_dh256.py --gpus=0 --workers=0 --exp-name=first-try

以r50_dh128为例进行训练,记的在trian.py里自己设置batch_size大小:

# HRNetV2-W18+OCR model
python train.py models/sbd/hrnet18_ocr64.py --gpus=0 --workers=0 --exp-name=first-try# HRNetV2-W32+OCR model
python train.py models/sbd/hrnet32_ocr128.py --gpus=0 --workers=0 --exp-name=first-try# HRNetV2-W48+OCR model
python train.py models/sbd/hrnet48_ocr128.py --gpus=0 --workers=0 --exp-name=first-try

以r50_dh128为例进行训练,记的在trian.py里自己设置batch_size大小:

以下是hrnet的预训练权重地址,并修改config.yml文件上预训练权重的存放地址。

Backbone训练集下载地址
HRNet-W18-CImageNet百度云[r5xn]
HRNet-W32-CImageNet百度云[itc1]
HRNet-W48-CImageNet百度云[68g2]

resnet不需要单独下载在ImageNet数据集上训练好的预训练权重,是因为可以通过联网下载

修改config.yml文件上训练模型权重保存的位置。

5.评估f-BRS的模型

博主使用源代码提供的模型权重

# --datasets:测试数据集,默认测试所有数据集 --checkpoint:模型权重
python scripts/evaluate_model.py <brs-mode> --checkpoint=<checkpoint-name>
# evaluates ResNet-34 model 
python scripts/evaluate_model.py f-BRS-B --checkpoint=resnet34_dh128_sbd# ResNet-50 model 
python scripts/evaluate_model.py RGB-BRS --checkpoint=resnet50_dh128_sbd --datasets=GrabCut,Berkeley# ResNet-50 model 
python scripts/evaluate_model.py RGB-BRS --checkpoint=resnet50_dh128_lvis --datasets=GrabCut,Berkeley# ResNet-101 model 
python scripts/evaluate_model.py DistMap-BRS --checkpoint=resnet101_dh256_sbd --datasets=DAVIS
# HRNetV2-W32+OCR model
python scripts/evaluate_model.py f-BRS-B --checkpoint=hrnet18_ocr64_sbd# HRNetV2-W32+OCR model
python scripts/evaluate_model.py f-BRS-B --checkpoint=hrnet32_ocr128_sbd# HRNetV2-W32+OCR model
python scripts/evaluate_model.py f-BRS-B --checkpoint=hrnet32_ocr128_lvis

以hrnet18_ocr64_sbd为例进行评估,测试所有数据集:
在这里插入图片描述

总结

尽可能简单、详细的介绍f-BRS的安装流程以及解决了安装过程中可能存在的问题。后续会根据自己学到的知识结合个人理解讲解f-BRS的原理和代码。

相关文章:

【图像分割】【深度学习】Windows10下f-BRS官方代码Pytorch实现

【图像分割】【深度学习】Windows10下f-BRS官方代码Pytorch实现 提示:最近开始在【图像分割】方面进行研究,记录相关知识点,分享学习中遇到的问题已经解决的方法。 文章目录 【图像分割】【深度学习】Windows10下f-BRS官方代码Pytorch实现前言f-BRS模型运行环境安装1.下载源码并…...

2023/5/4总结

刷题&#xff1a; 第二周任务 - Virtual Judge (vjudge.net) 这一题用到了素筛,然后穷举即可 #include<stdio.h> #define Maxsize 500000 int a[Maxsize]; long long b[Maxsize]; long long max0; int sushu() {a[0]a[1]0;int i,j,k;for(i2,k0;i<Maxsize;i){if(a[i…...

electron+vue3全家桶+vite项目搭建【17】pinia状态持久化

文章目录 引入问题演示实现效果展示、实现步骤1.封装状态初始化函数2.封装状态更新同步函数3.完整代码 引入 上一篇文章我们已经实现了electron多窗口中&#xff0c;pinia的状态同步&#xff0c;但你会发现&#xff0c;如果我们在一个窗口里面修改了状态&#xff0c;然后再打开…...

java基础入门-05-【面向对象进阶(static继承)】

Java基础入门-05-【面向对象进阶&#xff08;static&继承&#xff09;】 13、面向对象进阶&#xff08;static&继承&#xff09;1.1 如何定义类1.2 如何通过类创建对象1.3 封装1.3.1 封装的步骤1.3.2 封装的步骤实现 1.4 构造方法1.4.1 构造方法的作用1.4.2 构造方法的…...

day12 IP协议与ethernet协议

目录 IP包头 IP网的意义 IP数据报的格式 IP数据报分片 以太网包头&#xff08;链路层协议&#xff09; IP包头 IP网的意义 当互联网上的主机进行通信时&#xff0c;就好像在一个网络上通信一样&#xff0c;看不见互联的各具体的网络异构细节&#xff1b; 如果在这种覆盖…...

蓝牙耳机哪款性价比高?2023蓝牙耳机性价比排行

随着蓝牙耳机的使用愈发频繁&#xff0c;蓝牙耳机产品也越来越多&#xff0c;蓝牙耳机的功能、价格、外观设计等都不尽相同。接下来&#xff0c;我来给大家推荐几款性价比高的蓝牙耳机&#xff0c;感兴趣的朋友一起来看看吧。 一、南卡小音舱Lite2蓝牙耳机 参考价&#xff1a…...

关于C语言的一些笔记

文章目录 May4,2023常量问题基本数据类型补码printf的字符格式控制关于异或、异或的理解赋值运算i和i的区别关系运算符 &#xff2d;ay5,2023逻辑运算中‘非’的理解逗号运算运算符的优先级问题三目运算 摘自加工于C技能树 May4,2023 常量问题 //定义常量 const float PI; PI…...

【Python入门知识】NumPy数组迭代及连接

前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! 数组迭代 迭代意味着逐一遍历元素&#xff0c;当我们在 numpy 中处理多维数组时&#xff0c; 可以使用 python 的基本 for 循环来完成此操作。 如果我们对 1-D 数组进行迭代&#xff0c;它将逐一遍历每个元素。 实例 迭…...

我们公司的面试,有点不一样!

我们公司的面试&#xff0c;有点不一样&#xff01; 朋友们周末愉快&#xff0c;我是鱼皮。因为我很屑&#xff0c;所以大家也可以叫我屑老板。 自从我发了自己创业的文章和视频后&#xff0c;收到了很多小伙伴们的祝福&#xff0c;真心非常感谢&#xff01; 不得不说&#…...

C++之初识STL—vector

文章目录 STL基本概念使用STL的好处容器vector1.vector容器简介2.vector对象的默认构造函数3.vector对象的带参构造函数4.vector的赋值5.vector的大小6.vector容器的访问方式7.vector的插入 STL基本概念 STL(Standard Template Library,标准模板库)STL 从广义上分为: 容器(con…...

资讯汇总230503

230503 12:21 【放松身心亲近自然 自驾露营成旅游新风尚】今年“五一”假期&#xff0c;我国旅游业的快速恢复催生自驾露营休闲游、短途游、夜游等新型旅游产品提质升级。快速发展的新兴旅游业态&#xff0c;在促进旅游消费、培育绿色健康生活方式等方面发挥了积极作用&#xf…...

C++之编程规范

目录 谷歌C风格指南&#xff1a;https://zh-google-styleguide.readthedocs.io/en/latest/google-cpp-styleguide/contents/ 编码规则&#xff1a; • 开闭原则&#xff1a;软件对扩展是开放的&#xff0c;对修改是关闭的 • 防御式编程&#xff1a;简单的说就是程序不能崩溃 •…...

ChatGPT做PPT方案,10组提示词方案!

今天我们要搞定的PPT内容是&#xff1a; 活动类型&#xff1a;节日活动、会员活动、新品活动分析类型&#xff1a;用户分析、新品立项、项目汇报内容类型&#xff1a;内容规划、品牌策划 用到的工具&#xff1a; mindshow 邀请码 6509097ChatGPT传送门&#xff08;免费使用…...

分布式夺命12连问

分布式理论 1. 说说CAP原则&#xff1f; CAP原则又称CAP定理&#xff0c;指的是在一个分布式系统中&#xff0c;Consistency&#xff08;一致性&#xff09;、 Availability&#xff08;可用性&#xff09;、Partition tolerance&#xff08;分区容错性&#xff09;这3个基本…...

sourceTree离线环境部署

目录 1、下载sourceTree安装包&#xff0c;打开之后弹出注册界面&#xff08;需要去国外网站注册&#xff09;2、使用技术手段跳过注册步骤3、打开安装包进行安装 注&#xff1a;建议提前安装好git 1、下载sourceTree安装包&#xff0c;打开之后弹出注册界面&#xff08;需要去…...

6.1.1 图:基本概念

一&#xff0c;基本概念 1.基本定义 &#xff08;1&#xff09;图的定义 顶点集不可以是空集&#xff0c;但边集可以是空集。 &#xff08;2&#xff09; 有向图的表示&#xff1a; 圆括号 无向图的表示&#xff1a; 尖括号 简单图、多重图&#xff1a; 简单图&#xff1a;…...

SlickEdit for Windows and Linux crack

SlickEdit for Windows and Linux crack 现在可以在“新建注释”对话框中对颜色进行排序&#xff0c;使调色板中的颜色阵列看起来更符合逻辑。 在拆分或扩展行注释时添加了撤消步骤&#xff0c;这样您只需点击“撤消”一次即可撤消行注释扩展。 已更新VHDL颜色编码&#xff0c;…...

ChatGPT实现stackoverflow 解释

stackoverflow 解释 ChatGPT 公开服务以来&#xff0c;程序员们无疑是最早深入体验和"测试"的一批人。出色的效果也引发了一系列知识产权上的争议。著名的 stackoverflow 网站&#xff0c;就宣布禁止用户使用 ChatGPT 生成的内容来回答问题&#xff0c;一经发现&…...

第五章 作业(123)【编译原理】

第五章 作业【编译原理】 前言推荐第五章 作业123 随堂练习课前热身04-17随堂练习04-17课前热身04-24 最后 前言 2023-5-3 22:12:46 以下内容源自《【编译原理】》 仅供学习交流使用 推荐 第四章 作业&#xff08;123&#xff09;【编译原理】 第五章 作业 1 1.令文法G为…...

基于Vue的个性化网络学习笔记系统

1&#xff0e;系统登录&#xff1a;系统登录是用户访问系统的路口&#xff0c;设计了系统登录界面&#xff0c;包括用户名、密码和验证码&#xff0c;然后对登录进来的用户判断身份信息&#xff0c;判断是管理员用户还是普通用户。 2&#xff0e;系统用户管理&#xff1a;不管是…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)

cd /home 进入home盘 安装虚拟环境&#xff1a; 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境&#xff1a; virtualenv myenv 3、激活虚拟环境&#xff08;激活环境可以在当前环境下安装包&#xff09; source myenv/bin/activate 此时&#xff0c;终端…...