当前位置: 首页 > news >正文

欧拉函数详解

文章目录

    • 欧拉函数
      • 定义
      • 性质
      • 计算公式
      • 求某个数欧拉函数值
      • 线性筛求区域内欧拉函数

欧拉函数

定义

在[1,n]的范围内所有与n互质的数字的个数。

我们用 φ ( n ) \varphi(n) φ(n)来表示数字n的欧拉函数的值,例如: φ ( 4 ) = 2 \varphi(4)=2 φ(4)=2,与在[1,4]中与4互质的数字是:1 3,有两个,因此 φ ( 4 ) = 2 \varphi(4)=2 φ(4)=2

性质

  1. 如果n是一个质数: φ ( n ) = n − 1 \varphi(n)=n-1 φ(n)=n1
  2. 如果n是一个质数,则存在 n k n^k nk,则 φ ( n k ) = ( n − 1 ) ⋅ n k − 1 \varphi(n^k)=(n-1) \cdot n^{k-1} φ(nk)=(n1)nk1
  3. 积性函数:如果 g c d ( m , n ) = 1 gcd(m,n)=1 gcd(m,n)=1,则 φ ( m n ) = φ ( m ) ⋅ φ ( n ) \varphi(mn)=\varphi(m)\cdot \varphi(n) φ(mn)=φ(m)φ(n)

计算公式

根据整数唯一分解定理 n = ∏ i = 1 s p i a i n=\prod_{i=1}^{s}p_i^{a_i} n=i=1spiai,即任何一个正整数都可以分解为若干个质数的 a i a_i ai次幂的连乘积,其中 s s s为质因子的个数。

因此:
φ ( n ) = ∏ i = 1 s φ ( p i a i ) = ∏ i = 1 s ( p i − 1 ) ⋅ p i a i − 1 = ∏ i = 1 s ( 1 − 1 p i ) ⋅ p i a i = n ⋅ ∏ i = 1 s p i − 1 p i \varphi(n)=\prod_{i=1}^{s} \varphi(p_i^{a_i}) = \prod_{i=1}^{s}(p_i -1)\cdot p_i ^{a_{i} -1} = \prod_{i=1}^{s}(1- \frac{1}{p_i}) \cdot p_i^{a_i}=n\cdot \prod_{i=1}^{s}\frac{p_i -1}{p_i} φ(n)=i=1sφ(piai)=i=1s(pi1)piai1=i=1s(1pi1)piai=ni=1spipi1

因此我们可以得到欧拉函数的计算公式 φ ( n ) = n ⋅ p 1 − 1 p 1 ⋅ p 2 − 1 p 2 ⋯ p s − 1 p s \varphi(n) = n \cdot \frac{p_1-1} {p1} \cdot \frac{p_2-1}{p2} \cdots\frac{p_s-1}{p_s} φ(n)=np1p11p2p21psps1

通俗来讲, n n n的欧拉函数值就是 n n n对每个质因数分解所得到的质因数进行操作后的连乘积 然后再乘一个 n n n

因此欧拉函数的值与n和他的质因子有关,与项数无关


求某个数欧拉函数值

根据我们刚才得到的欧拉函数的计算公式,可以得到某个值的欧拉函数的值,我们可以使用试除法来计算

typedef long long ll;
//1. 试除法求欧拉函数:某一个确切的值的欧拉函数
ll fun1(int n){ll phi=n;for (int i=2;1ll*i*i<=n;i++){ //防止溢出if (n%i==0){  //如果是一个质因子phi=phi/i*(i-1); //计算欧拉函数值while (n%i==0){ //分解质因子n/=i;}}}if (n>1){phi=phi/n*(n-1); //最后还剩其自身}return phi;
}

线性筛求区域内欧拉函数

如果 n n n 是质数,则 φ ( n ) = n − 1 \varphi(n)=n-1 φ(n)=n1
在线性筛中,一个合数一定是被他的最小质因子筛掉的。假设这个最小质因数是 p j p_j pj,因此一定存在一个 m = p j ⋅ i m=p_j \cdot i m=pji
此时会出现两种情况:

  1. 如果 i i i 能够被 p j p_j pj 整除,则 i i i 一定包含了 p j p_j pj 的所有质因子,因此我们可以得到:
    φ ( m ) = m ⋅ ∏ k = 1 s p k a k = p j ⋅ i ⋅ ∏ k = 1 s p k a k = p j ⋅ φ ( i ) \varphi(m)=m \cdot \prod_{k=1}^{s}p_k^{a_k} = p_j \cdot i \cdot \prod_{k=1}^{s}p_k^{a_k} = p_j \cdot \varphi(i) φ(m)=mk=1spkak=pjik=1spkak=pjφ(i)
  2. 如果 i i i 不能被 p j p_j pj 整除,则 i i i p j p_j pj 一定是互为质数的,因此有以下式子:
    φ ( m ) = φ ( p j ) ⋅ φ ( i ) = φ ( i ) ⋅ ( p j − 1 ) \varphi(m)=\varphi(p_j) \cdot \varphi(i) = \varphi(i) \cdot (p_j-1) φ(m)=φ(pj)φ(i)=φ(i)(pj1)

并且通过这种线性筛,我们可以得到 [ 1 , n ] [1,n] [1,n]范围内的所有的数字的欧拉函数。

最后代码如下:

//2. 筛法求欧拉函数:任意范围内的数值
const int N=1e8+10;
int primes[N]; //存储质数
bool vis[N]; 
int phi[N]; //存储每个数字的欧拉哈数
std::vector<int> vec;
void fun2(int n){int cnt=0;for (int i=2;i<=n;i++){if (!vis[i]){primes[++cnt]=i;//质数i的欧拉函数就是i-1phi[i]=i-1;}for (int j=1;1ll*i*primes[j]<=n;j++){int m=i*primes[j];vis[m]=true;if (i%primes[j]==0){phi[m]=phi[i]*primes[j];break; //整除中断}else{phi[m]=phi[i]*(primes[j]-1);}}}
}

相关文章:

欧拉函数详解

文章目录 欧拉函数定义性质计算公式求某个数欧拉函数值线性筛求区域内欧拉函数 欧拉函数 定义 在[1,n]的范围内所有与n互质的数字的个数。 我们用 φ ( n ) \varphi(n) φ(n)来表示数字n的欧拉函数的值&#xff0c;例如&#xff1a; φ ( 4 ) 2 \varphi(4)2 φ(4)2&#xf…...

手把手教你如何将安卓手机数据导入iPhone!【详解】

案例&#xff1a;安卓数据导入苹果手机 【大神们&#xff0c;刚换了新的苹果手机&#xff0c;原本的安卓手机数据怎么导入新手机&#xff1f;】 想要换用iPhone&#xff0c;但是又不想丢失安卓手机里的重要数据怎么办&#xff1f;如何将安卓手机数据导入iphone&#xff1f;本文…...

怎么轻松地搞定Win11系统备份任务?

“我是一个电脑小白&#xff0c;不是很懂电脑的一些操作。我刚买了一台新电脑&#xff0c;它装的是Win11系统&#xff0c;我害怕它出现什么问题&#xff0c;听朋友说可以通过备份的方法保护系统&#xff0c;这是真的吗&#xff1f;有谁知道该怎么进行Win11系统备份吗&#xff1…...

MySQL集群

目录 主从复制 主从复制流程&#xff1a; 为什么要有relay log中继日志&#xff1f; 为什么要有主从复制&#xff0c;好处&#xff1f; 实际生产环境中。如果对MySQL数据库的读写都在一台数据库服务器中操作&#xff0c;无论是再安全性、高可用性&#xff0c;还是高并发性等…...

关于Kerberos认证的一些攻击手法学习总结

Kerberos认证流程 前言 本文主要分享最近学习的关于域内Kerberos认证的一些攻击手法&#xff0c;以自我的理解为主&#xff0c;从原理理解切入到基本工具利用来阐述&#xff0c;个人的理解分析较为啰嗦&#xff0c;嫌太兀长的可以跳着看就好&#xff0c;还请各位谅解。如有错误…...

STL-deque容器

双端数组&#xff0c;可以对头端进行插入删除操作 deque 容器和 vecotr 容器有很多相似之处&#xff0c;比如&#xff1a; deque 容器也擅长在序列尾部添加或删除元素&#xff08;时间复杂度为O(1)&#xff09;&#xff0c;而不擅长在序列中间添加或删除元素。deque 容器也可…...

❤ go语言和java语言的优缺点

❤ go语言和java语言的优缺点对比 对比GOJAVA介绍Java是一种流行的面向对象的编程语言&#xff0c;它的语法类似于C&#xff0c;并且具有丰富的类库和工具。Java的可移植性很好&#xff0c;可以在多种平台上运行。Go是一种新兴的编程语言&#xff0c;它比Java更加简洁和易学&a…...

安全成就未来|Fortinet Accelerate 2023·中国区巡展首站启幕

Fortinet Accelerate 2023中国区巡展 年度网络安全盛会 Fortinet Accelerate 2023中国区巡展&#xff0c;昨日在深圳拉开帷幕&#xff0c;开启15城巡展的“首城之站”。本年度巡展主题“安全成就未来”&#xff0c;Fortinet与中企通信、亚马逊云科技等生态合作伙伴&#xff0c…...

输入URL到显示界面的整个过程

以如下这个比较简单的网络拓扑模型作为例子&#xff0c;探究中间发生的整个过程&#xff1a; 1 HTTP 浏览器做的第一步工作就是要对 URL 进行解析&#xff0c;从而生成发送给 Web 服务器的请求信息。下图展示了一条长长的URL里各个元素代表什么&#xff1a; 所以整个长长的URL…...

BetaFlight飞控启动运行过程简介

BetaFlight飞控启动&运行过程简介 1. 源由2. 启动过程2.1 main&#xff08;主程序&#xff09;2.2 init &#xff08;初始化&#xff09;2.3 run 3. 任务调度3.1 任务定义3.2 scheduler (调度器) 4. 总结5. 参考资料6. 附录 -- 问题汇总6.1 Why desiredPeriodCycles is so …...

智能汽车实验二(视觉传感器标定)

实验二 视觉传感器标定&#xff08;实验报告&#xff09; 【实验目的】 1、了解开源图像处理库OpenCV的结构&#xff0c;掌握OpenCV的基本使用方法。 2、了解开源图像处理库OpenCV的基本模块功能&#xff0c;掌握常用图像处理方法。 3、掌握摄像机标定算法&#xff0c;学会使用…...

计算机网络:HTTP

目录 HTTP 是什么&#xff1f;HTTP 常见的状态码有哪些HTTP 常见字段有哪些参考资料 HTTP 是什么&#xff1f; HTTP 是超文本传输协议&#xff0c;也就是HyperText Transfer Protocol。 1. 「协议」 「协」字&#xff0c;代表的意思是必须有两个以上的参与者。「议」字&…...

Go 语言接口

Go 语言接口 Go 语言提供了另外一种数据类型即接口&#xff0c;它把所有的具有共性的方法定义在一起&#xff0c;任何其他类型只要实现了这些方法就是实现了这个接口。 实例 实例 /* 定义接口 */ type interface_name interface { method_name1 [return_type] method_name2…...

常用的intellij的快捷键

ctrlshiftspace(new 后面自动提示) ctrlshift/ (注释) itar后面tab (for循环) it后面ctrlj(很多智能代码生成) AltInsert(自动生成构造函数&#xff0c;get,set方法) ctrlaltt(自动生成try,catch) altenter(创建测试类和子类) ctrlshiftbackspace(最后编辑的地方) ctrl…...

Unity中的`SetPositionAndRotation()`

介绍 SetPositionAndRotation() 是Unity中的一个方法&#xff0c;用于同时设置物体的位置和旋转。它可以在不必分别调用 transform.position 和 transform.rotation 属性的情况下&#xff0c;直接设置物体的位置和旋转。 方法 以下是 SetPositionAndRotation() 方法的参数&a…...

API 接口的使用和功能

随着互联网的快速发展&#xff0c;API接口已经成为了现代开发中不可或缺的一部分。API接口可以让你的应用程序与其他应用程序、系统或服务进行数据交流和集成。如果你正在开发应用程序&#xff0c;那么最好的方法就是使用API接口来增强功能和性能。 我们的API接口是为您的应用…...

Vue插件

介绍 Vue插件是一种扩展Vue应用程序功能的方式。使用Vue插件&#xff0c;您可以在Vue应用程序中重复使用代码或添加新功能。更具体地说&#xff0c;Vue插件通常具有以下用途&#xff1a; 封装重复的功能或组件&#xff0c;以便在多个Vue组件中使用。 扩展Vue的核心功能并使其…...

C++好难(5):内存管理

这一节学完&#xff0c;我们 C嘎嘎 就算是正式入门了&#xff0c;但是之后的课还会更上一阶d(ŐдŐ๑) 继续坚持&#xff01; 【本节目标】 1. C/C内存分布 2. C语言中动态内存管理方式 3. C中动态内存管理 4. operator new与operator delete函数 5. new和delete的实现原…...

vue-admin-template中vue动态路由不显示问题解决

使用的的是vue-admin-template&#xff0c;这是一个极简的 vue admin 管理后台&#xff0c;它只包含了 Element UI & axios & iconfont & permission control & lint&#xff0c;这些搭建后台必要的东西。需要根据自己的需求二次开发。 线上地址:vue-admin-tem…...

IP协议介绍

文章目录 一、IP协议的基本认识二、IP的协议头格式三、网段划分四、特殊的IP地址五、IP地址的数量限制六、私有IP地址和公网IP地址 一、IP协议的基本认识 IP在网络分层中属于网络层协议&#xff0c;传输层协议里的TCP协议解决的是可靠性问题&#xff0c;网络层协议里的IP协议能…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...