当前位置: 首页 > news >正文

Doris--简单使用

一、数据表的创建与数据导入

1.1、创建表

1.1.1、单分区

CREATE TABLE table1
(siteid INT DEFAULT '10',citycode SMALLINT,username VARCHAR(32) DEFAULT '',pv BIGINT SUM DEFAULT '0'			-- 聚合模型, value column 使用sum聚合
)
AGGREGATE KEY(siteid, citycode, username)  -- 聚合模型
DISTRIBUTED BY HASH(siteid) BUCKETS 10     -- 分桶
PROPERTIES("replication_num" = "1"); 	   -- 测试使用, 单个副本

1.1.2、多分区

CREATE TABLE table2
(event_day DATE,siteid INT DEFAULT '10',citycode SMALLINT,username VARCHAR(32) DEFAULT '',pv BIGINT SUM DEFAULT '0'
)
AGGREGATE KEY(event_day, siteid, citycode, username)
PARTITION BY RANGE(event_day)  -- 分区
(PARTITION p201706 VALUES LESS THAN ('2017-07-01'),PARTITION p201707 VALUES LESS THAN ('2017-08-01'),PARTITION p201708 VALUES LESS THAN ('2017-09-01')
)
DISTRIBUTED BY HASH(siteid) BUCKETS 10
PROPERTIES("replication_num" = "1");

1.2、数据导入

此处仅用于测试导入数据


insert into table1 values \
("1","1","jim","2"), \
("2","1","grace","2"), \
("3","2","tom","2"), \
("4","3","bush","3"), \
("5","3","helen","3");insert into table2 values \
("2017-07-03","1","1","jim","2"),\
("2017-07-05","2","1","grace","2"),\
("2017-07-12","3","2","tom","2"),\
("2017-07-15","4","3","bush","3"),\
("2017-07-12","5","3","helen","3");

二、数据查询

doris 兼容 mysql 协议, 查询基本一致

2.1、Join 查询

> SELECT SUM(table1.pv) FROM table1 JOIN table2 WHERE table1.siteid = table2.siteid;
+--------------------+
| sum(`table1`.`pv`) |
+--------------------+
|                 14 |
+--------------------+
1 row in set (0.01 sec)

2.2、子查询

> SELECT SUM(pv) FROM table2 WHERE siteid IN (SELECT siteid FROM table1 WHERE siteid > 2);
+-----------+
| sum(`pv`) |
+-----------+
|         8 |
+-----------+
1 row in set (0.04 sec)

三、表结构变更

使用 ALTER TABLE COLUMN 命令可以修改表的 Schema,包括如下修改:

  • 增加列
  • 删除列
  • 修改列类型
  • 改变列顺序

以下通过使用示例说明表结构变更:

3.1、新增列

-- 新增一列 uv,类型为 BIGINT,聚合类型为 SUM,默认值为 0:
ALTER TABLE table1 ADD COLUMN uv BIGINT SUM DEFAULT '0' after pv;

提交成功后,可以通过以下命令查看作业进度:

SHOW ALTER TABLE COLUMN;

当作业状态为 FINISHED,则表示作业完成。新的 Schema 已生效。
在这里插入图片描述

可以使用以下命令取消当前正在执行的作业:

CANCEL ALTER TABLE COLUMN FROM table1;

四、Rollup

ROLLUP 在多维分析中是“上卷”的意思,即将数据按某种指定的粒度(更粗粒度)进行进一步聚合。

4.1、Rollup 创建

Rollup 可以理解为 Table 的一个物化索引结构物化 是因为其数据在物理上独立存储,而 索引 的意思是,Rollup可以调整列顺序以增加前缀索引的命中率,也可以减少key列以增加数据的聚合度。

对于 table1 明细数据是 siteid, citycode, username 三者构成一组 key,从而对 pv 字段进行聚合;如果业务方经常有看城市 pv 总量的需求,可以建立一个只有 citycode, pv 的rollup。

ALTER TABLE table1 ADD ROLLUP rollup_city(citycode, pv);

提交成功后,可以通过以下命令查看作业进度:

SHOW ALTER TABLE ROLLUP;

当作业状态为 FINISHED,则表示作业完成。

Rollup 建立之后,查询不需要指定 Rollup 进行查询。还是指定原有表进行查询即可。程序会自动判断是否应该使用 Rollup。是否命中 Rollup可以通过 EXPLAIN your_sql; 命令进行查看。

在这里插入图片描述

4.2、Rollup 与 三个数据模型的查询

4.2.1、Aggregate 和 Unique 模型中的 ROLLUP

因为 Unique 只是 Aggregate 模型的一个特例,所以不加以区别。
聚合模型 中 rollup的使用 和上面的一致, 为了更粗粒度的聚合,减少数据的扫描

4.2.2、Duplicate 模型中的 ROLLUP

因为 Duplicate 模型没有聚合的语意。所以该模型中的 ROLLUP,已经失去了“上卷”这一层含义。而仅仅是作为调整列顺序,以命中前缀索引的作用。

五、物化视图

物化视图是一种以空间换时间的数据分析加速技术。Doris 支持在基础表之上建立物化视图。比如可以在明细数据模型的表上建立基于部分列的聚合视图,这样可以同时满足对明细数据和聚合数据的快速查询。

同时,Doris 能够自动保证物化视图和基础表的数据一致性,并且在查询时自动匹配合适的物化视图,极大降低用户的数据维护成本,为用户提供一个一致且透明的查询加速体验。

关于物化视图的具体介绍,可参阅 物化视图

相关文章:

Doris--简单使用

一、数据表的创建与数据导入 1.1、创建表 1.1.1、单分区 CREATE TABLE table1 (siteid INT DEFAULT 10,citycode SMALLINT,username VARCHAR(32) DEFAULT ,pv BIGINT SUM DEFAULT 0 -- 聚合模型, value column 使用sum聚合 ) AGGREGATE KEY(siteid, citycode, …...

使用GPT让你的RStudio如虎添翼

API的的调用目前来说不限制地区,但是OpenAI的API的申请限制了地区。运行的时候,如果出现了429,意味着你被限流了,需要等一会才行。 前提是,你需要注册一个OpenAI的账户,然后在https://openai.com/api/ 里申…...

Python 算法交易实验45 再探量化

说明 去年大部分精力都在构建底层架构和工具了,一直都没有时间搞量化。目前底层的数据库服务(ADB)和清洗(衍生 AETL) 工具已经好了,我想尽快的把量化启动起来。 内容 1 思想 作为交易来说,只有买卖。通过数据分析与模型,我们获得的增强点是决策。在合适的时候进行买卖的…...

Dubbo加载配置文件方式,加载流程,加载配置文件源码解析

配置方法 API配置 以Java编码的方式组织配置&#xff0c;Dubbo3配置API详解 &#xff1a;https://dubbo.apache.org/zh/docs3-v2/java-sdk/reference-manual/config/api/#bootstrap-api public static void main(String[] args) throws IOException {ServiceConfig<Greet…...

十大开源测试工具和框架,一定有你需要的

目录 前言 Katalon Studio Selenium Appium JMeter SOAP UI Robot Framework Watir JUnit Robotium Citrus 总结 前言 免费的开源框架和工具由于其开源特性&#xff0c;现在逐渐成为自动化测试的首选解决方案。区别在于&#xff0c;你是喜欢使用类库编写一个全新的…...

加密技术在android中的应用

1、算法基础 算法基础参照linux的全盘加密与文件系统加密在android中的应用 消息摘要算法 对称加密算法 非对称加密算法...

备战蓝桥杯【一维前缀和】

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

研报精选230214

目录 【行业230214艾瑞股份】中国增强现实&#xff08;AR&#xff09;行业研究报告【行业230214国信证券】信息安全深度剖析5&#xff1a;密评和信创双催化&#xff0c;密码产业开启从1到N【行业230214民生证券】磁性元器件深度报告&#xff1a;乘新能源之风&#xff0c;磁性元…...

【SSL/TLS】准备工作:证书格式

证书格式1. 格式说明1.1 文件编码格式1.2 文件后缀格式2. xca导出格式1. 格式说明 1.1 文件编码格式 1. PEM格式: 使用Base 64 ASCII进行编码的纯文本格式。后缀为“.pem”, ".cer", ".crt", ".key" 2. DER格式 二进制编码格式&#xff0c;文件…...

Linux常用命令---系统常用命令

Linux系统常用命令场景一&#xff1a; 查看当前系统内核版本相关信息场景二&#xff1a; sosreport 命令场景三&#xff1a; 如何定位并确定命令&#xff1f;场景四&#xff1a;查看当前系统运行负载怎场景五&#xff1a; 查看当前系统的内存可用情况场景六&#xff1a;查看网卡…...

C 结构体

C 数组允许定义可存储相同类型数据项的变量&#xff0c;结构是 C 编程中另一种用户自定义的可用的数据类型&#xff0c;它允许您存储不同类型的数据项。结构用于表示一条记录&#xff0c;假设您想要跟踪图书馆中书本的动态&#xff0c;您可能需要跟踪每本书的下列属性&#xff…...

手语检测识别

论文&#xff1a;Real-Time Sign Language Detection using Human Pose Estimation Github&#xff1a;https://github.com/google-research/google-research/tree/master/sign_language_detection SLRTP 2020 手语识别任务包括手语检测&#xff08;Sign language detection&a…...

android fwk模块之Sensor架构

本文基于Android 12源码整理&#xff0c;包含如下内容&#xff1a; 通信架构应用层实现使用方式SensorManager抽象接口具体实现fwk层的实现native中的SensorManager的初始化流程native中的消息队列初始化与数据读取sensorservice实现HAL层的实现通信架构 应用层实现 涉及代码&…...

安装less-loader5出现webpack版本不兼容

今天遇到一个问题&#xff1a; 安装less-loader5之后其它包提示peerDependencies WARNING&#xff0c;意思是包版本不兼容。 【难题】 虽然NPM已经很自动化了&#xff0c;但依赖问题真的是一个难题&#xff0c;无法自动解决&#xff0c;需要人工干预调整。 【解决办法】 去查…...

Java 网络编程

1.UDP和TCPUDP和TCP是传输层协议中最核心的两种协议他们的特点分别是UDP: 无连接,不可靠传输,面向数据报,全双工TCP: 有连接,是可靠传输,面向字节流,全双工有无连接有连接:就好比两个人打电话,打电话的一方发出连接请求,被打电话的一方选择确认连接,此时双方才能进行通话无连接…...

BEV学习记录

近期可能要经常性的开展BEV工作&#xff0c;打算把自己觉着不错的网站拿出来记录一下。 首先贴上来我还没有细读的一篇觉着不错的文章。 自动驾驶感知新范式——BEV感知经典论文总结和对比&#xff08;上&#xff09;_苹果姐的博客-CSDN博客_bev视角 开山之作--LSS ECCV 202…...

Webrtc Native C++切换音频输入源

modules/audio_device/audio_device_impl.cc #include “api/audio_options.h” #include “modules/audio_device/include/factory.h” // 创建一个 AudioDeviceModule 对象 auto audio_device_module = webrtc::AudioDeviceModule::Create( webrtc::AudioDeviceModule::kPl…...

裸辞5个月,面试了37家公司,终于找到理想工作了

上半年裁员&#xff0c;下半年裸辞&#xff0c;有不少人高呼裸辞后躺平真的好快乐&#xff01;但也有很多人&#xff0c;裸辞后的生活五味杂陈。 面试37次终于找到心仪工作 因为工作压力大、领导PUA等各种原因&#xff0c;今年2月下旬我从一家互联网小厂裸辞&#xff0c;没想…...

Mybatis-plus@DS实现动态切换数据源应用

目录1 DS实现动态切换数据源原理2 不可在事务中切换数据库分析解决3 原因解析1 DS实现动态切换数据源原理 首先mybatis-plus使用com.baomidou.dynamic.datasource.AbstractRoutingDataSource继承 AbstractDataSource接管数据源&#xff1b;具体实现类为com.baomidou.dynamic.d…...

SpringBoot的创建和使用

SpringBoot是什么&#xff1f;SpringBoot诞生的目的就是为了简化Spring开发&#xff0c;而相对于Spring&#xff0c;SpringBoot算是一个很大的升级&#xff0c;就如同汽车手动挡变成了自动挡。Spring&#xff1a;SpringBoot&#xff1a;SpringBoot的优点SpringBoot让Spring开发…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...