当前位置: 首页 > news >正文

Call for Papers丨第三届GLB@KDD‘23 Workshop

图片

鉴于介绍新数据集和Benchmark研究往往需要不同于常规论文的评审标准,计算机视觉和自然语言处理领域,以及最近的NeurIPS会议,都有专门致力于建立新Benchmark数据集和任务的Conference Track。然而在图机器学习领域,我们还没有类似的发表渠道。

Workshop on Graph Learning Benchmarks(GLB)致力于征集新的图机器学习任务或新的图结构数据集方面的贡献,这些任务和数据有潜力(i)帮助理解图表示模型在不同问题集合上的性能和局限性;(ii)为各种模型提供Benchmark评估支持。我们还欢迎基于Data-Cenetric方法的图学习的贡献,例如收集、注释、清洗、增强和合成图结构数据的新方法。

研讨会官网地址:https://graph-learning-benchmarks.github.io/

在过去的两年里,我们成功举办了研讨会的第一届和第二届,吸引了图机器学习领域的大量关注。

在过去两届,我们有幸邀请到了众多图学习领域的著名学者,包括Jure Leskovec (Stanford),Leman Akoglu (CMU),Michael Bronstein (Oxford),Stephan Günnemann (TU Munich),以及Tina Eliassi-Rad (Northeastern)作为演讲嘉宾,以及唐杰 (清华),孙怡舟(UCLA),Xin Luna Dong (Meta),Petar Veličković (DeepMind & Cambridge), Minjie Wang (Amazon DGL Team),以及Rose Yu (UCSD)作为圆桌讨论嘉宾,同时发表了来自世界各地作者的相关论文约三十篇。

我们期待与会者为图学习领域带来创新的数据集和任务,推动研究和实践的发展。我们鼓励来自学术界和工业界的研究者、工程师和实践者参与本次研讨会,分享他们的见解和经验。

参加本次研讨会,您将有机会与图学习领域的专家和同行互动,了解最新的研究成果和应用案例。我们诚挚邀请您提交高质量的论文,共同探讨图学习基准的未来发展趋势。

Call for Papers

我们特别(但不仅限于)征集对以下至少一个方面作出贡献的研究:

  • Real-World Graph Datasets: Novel real-world graph-structured datasets — especially large-scale, application-oriented, and publicly accessible datasets.

  • Synthetic Graph Datasets: Synthetic graph-structured datasets that are well-supported by graph theory, network science, or empirical studies, and can be used to reveal limitations of existing graph learning methods.

  • Graph Benchmarking Software Packages: Software packages which enable streamlined benchmarking large-scale online graphs, crawling or crowdsourcing of graph data, and generation of realistic synthetic graphs.

  • Data Collection: Novel approaches to collect and annotate graph-structured data. Crowdsourcing and sampling methods on large networks.

  • Data Processing: Novel approaches to clean and impute noisy/missing graph-structured data. Data augmentation approaches for self-supervision.

  • Graph Learning Tasks: New learning tasks and applications on different types of graphs, at different levels (e.g., node, edge, and (sub)graph), with a special focus on real-world and industry-oriented problems.

  • Evaluation Metrics: New evaluation procedures and metrics of graph learning associated with the various tasks and datasets.

  • Benchmarking Studies: Studies that benchmark multiple graph ML methods (especially graph neural networks) on non-trivial tasks and datasets. We explicitly encourage works that reveal limitations of existing models, optimize matches between model design and problems, and other novel findings about the behaviors of existing models on various tasks or datasets.

  • Graph Learning Task Taxonomy: Discussions towards a more comprehensive and fine-grained taxonomy of graph learning tasks.

重要日期

提交截止日期:2023年5月26日

录用通知:2023年6月13日

Camera Ready截止日期:2023年6月27日

格式

  • 论文不超过4页(不包括参考文献和附录),使用ACM “sigconf” LaTeX模板(参见KDD 2023的指导)。

  • 本次研讨会为Non-Archival性质,与会议和期刊发表不冲突。近期已经在会议或期刊发表的相关研究成果也欢迎投稿。

  • 为方便数据/代码共享,提交为单向盲审。审稿人是匿名的,但作者在提交中无需匿名。

  • 强烈建议作者在提交中包含相应的数据集和代码作为补充材料。对于大型数据集或代码仓库,作者可以通过Github、Google Drive、Dropbox、OneDrive或Box提供外部链接。我们限制存储平台的选择是出于安全考虑。如果上述平台都不适用,请发送电子邮件给组织者。

  • 如果数据无法公开提供,需要额外的章节说明已建立基准的结果如何推广到其他图数据。

论文提交

摘要和论文可通过CMT提交:https://cmt3.research.microsoft.com/GLB2023

组织者

图片

有关以往研讨会详细信息,请访问此网站:https://graph-learning-benchmarks.github.io/all-editions

如果您有任何问题,请通过此电子邮件地址与我们联系:glb23-organizers@umich.edu

相关文章:

Call for Papers丨第三届GLB@KDD‘23 Workshop

鉴于介绍新数据集和Benchmark研究往往需要不同于常规论文的评审标准,计算机视觉和自然语言处理领域,以及最近的NeurIPS会议,都有专门致力于建立新Benchmark数据集和任务的Conference Track。然而在图机器学习领域,我们还没有类似的…...

【多线程】单例模式

目录 饿汉模式 懒汉模式-单线程版 懒汉模式-多线程版 懒汉模式-多线程版(改进) 单例是一种设计模式。 啥是设计模式 ? 设计模式好比象棋中的 " 棋谱 ". 红方当头炮 , 黑方马来跳 . 针对红方的一些走法 , 黑方应招的时候有一些固定的套路. 按照套路来走局势…...

7搜索管理

7搜索管理 7.1 准备环境 7.1.1 创建映射 创建xc_course索引库。 创建如下映射 post:http://localhost:9200/xc_course/doc/_mapping 参考 “资料”–》搜索测试-初始化数据.txt { "properties": { "description": { "type": &…...

在Pytorch中使用Tensorboard

Tensorboard是一款深度学习可视化软件,目前主要使用了它的可视化模型, 可视化模型权重和可视化损失函数功能。 x.1 tensorboard初始化 tensorboard初始化需要导入SummaryWriter包并指定存储位置和开放端口号。 from torch.utils.tensorboard import SummaryWrite…...

[笔记]深入解析Windows操作系统《四》管理机制

文章目录 前言4.1注册表查看和修改注册表注册表用法注册表数据类型注册表逻辑结构HKEY_CURRENT_USERHKEY_USERS 实验:观察轮廓加载和卸载HKEY_CLASSES_ROOTHKEY_LOCAL_MACHINE 实验:离线方式或远程编辑BCDHKEY_CURRENT_CONFIGHKEY_PERFORMANCE_DATA 前言 本章讲述了…...

【小沐学Python】Python实现在线英语翻译功能

文章目录 1、简介2、在线翻译接口2.1 Google Translate API2.2 Microsoft Translator API2.2.1 开发简介2.2.2 开发费用2.2.3 开发API 2.3 百度翻译开放平台 API2.3.1 开发简介2.3.2 开发费用2.3.3 开发API 2.4 Tencent AI 开放平台的翻译 API2.4.1 开发简介2.4.2 开发API 2.5 …...

k8s中pod使用详解

一、前言 在之前k8s组件一篇中,我们谈到了pod这个组件,了解到pod是k8s中资源管理的最小单位,可以说Pod是整个k8s对外提供服务的最基础的个体,有必要对Pod做深入的学习和探究。 二、再看k8s架构图 为了加深对k8s中pod的理解,再来回顾下k8s的完整架构 三、pod特点 结合上面这…...

案例说明:vue中Element UI下拉列表el-option中的key、value、label含义各是什么

可以简单理解为&#xff1a;label 是给用户展示的东西&#xff0c;value是前端往后端传递的真实值 <template><div><el-page-header back"goBack" content"注册"></el-page-header><el-divider></el-divider><el-…...

idea创建javaweb项目步骤超详细(2022最新版本)

目录 前言必读 一、新建文件 1.在idea里面点击文件-新建-项目 2.新建项目-更改名称为自己想要的项目名称-创建 3.右键自己建立的项目-添加框架支持&#xff08;英文版是Add Framework Support...&#xff09; 4.勾选Web应用程序-确定 5.建立成功界面 二、配置tomcat 6.…...

「SAP ABAP」OPEN SQL(六)【DELETE语句 | MODIFY语句】

💂作者简介: THUNDER王,一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学本科在读,同时任汉硕云(广东)科技有限公司ABAP开发顾问。在学习工作中,我通常使用偏后端的开发语言ABAP,SQL进行任务的完成,对SAP企业管理系统,SAP ABAP开发和数据库具有较…...

SpringCloud --- Feign远程调用

一、RestTemplate问题 先来看我们以前利用RestTemplate发起远程调用的代码&#xff1a; 存在下面的问题&#xff1a; 代码可读性差&#xff0c;编程体验不统一参数复杂URL难以维护 Feign是一个声明式的http客户端&#xff0c;官方地址&#xff1a;GitHub - OpenFeign/feign:…...

基于单片机的数字频率计设计

数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号&#xff0c;方波信号及其他各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试…...

我看看哪个靓仔还没把Github Copilot用起来?

本人经常分享有价值的生产力工具、技术、好物与书籍&#xff0c;可关注同名公众&#x1f42d;并设为&#x1f31f;星标&#xff0c;第一时间获得更新 Github Copilot 是一个AI编程助手&#xff0c;其使用 OpenAI CodeX 在你的编辑器中实时建议代码或给你实现整个功能。 视频版介…...

C++系列一: C++简介

C入门简介 1. C语言的特点2. C编译器3. 第一个 C 程序4. 总结&#xff08;手稿版&#xff09; C 是一种高级编程语言&#xff0c;是C语言的扩展和改进版本&#xff0c;由Bjarne Stroustrup于1983年在贝尔实验室为了支持C语言中的面向对象编程而创建。C 既能够进行底层的系统编程…...

信通初试第一:无科研无竞赛一战上岸上海交大819学硕感悟

笔者来自通信考研小马哥23上交819全程班学员 信通初试第一&#xff1a;无科研无竞赛一战上岸上海交大819学硕感悟 原创2023-04-27 11:04通信考研小马哥 笔者来自通信考研小马哥23上交819全程班学员 本人情况&#xff1a; 本人是19届交本&#xff0c;本科成绩很差&#xff0c;…...

Spring —— Spring Boot 配置文件

JavaEE传送门 JavaEE Spring —— Bean 作用域和生命周期 Spring —— Spring Boot 创建和使用 目录 Spring Boot 配置文件Spring Boot 配置文件格式properties配置文件properties 基本语法properties 缺点 yml 配置文件yml 基本语法yml 配置不同类型数据及 nullyml 配置对象…...

Python 网络爬虫与数据采集(一)

Python 网络爬虫与数据采集 第1章 序章 网络爬虫基础1 爬虫基本概述1.1 爬虫是什么1.2 爬虫可以做什么1.3 爬虫的分类1.4 爬虫的基本流程1.4.1 浏览网页的流程1.4.2 爬虫的基本流程 1.5 爬虫与反爬虫1.5.1 爬虫的攻与防1.5.2 常见的反爬与反反爬 1.6 爬虫的合法性与 robots 协议…...

2023年6月DAMA-CDGP数据治理专家认证请尽快报名啦!

目前6月DAMA-CDGP数据治理认证考试开放报名地区有&#xff1a;北京、上海、广州、深圳、长沙、呼和浩特。 目前南京、济南、西安、杭州等地区还在接近开考人数中&#xff0c;打算参加6月考试的朋友们可以抓紧时间报名啦&#xff01;&#xff01;&#xff01; 5月初&#xff0c;…...

STM32+esp8266,让你的STM32开发板连接网络-----esp8266

分享一下&#xff0c;STM32开发板连接网络的第一种方法&#xff1a;连接esp8266。 esp8266与STM32利用串口通信连接&#xff0c;esp8266连接网络&#xff0c;把收到的数据通过串口的方式传输给STM32&#xff0c;之后STM32接收到消息做出对应的反应。 使用到的开发板如图&…...

分布式缓存的基础知识

前言 现代互联网应用中&#xff0c;分布式缓存成为了必不可少的一环。它通过在多台服务器之间共享数据&#xff0c;避免了网络通信的高延迟和低带宽的性能问题。本文将介绍分布式缓存的基础知识&#xff0c;包括缓存机制、常见的缓存策略以及缓存的使用场景。 缓存机制 缓存是…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...

自定义线程池1.2

自定义线程池 1.2 1. 简介 上次我们实现了 1.1 版本&#xff0c;将线程池中的线程数量交给使用者决定&#xff0c;并且将线程的创建延迟到任务提交的时候&#xff0c;在本文中我们将对这个版本进行如下的优化&#xff1a; 在新建线程时交给线程一个任务。让线程在某种情况下…...