当前位置: 首页 > news >正文

Call for Papers丨第三届GLB@KDD‘23 Workshop

图片

鉴于介绍新数据集和Benchmark研究往往需要不同于常规论文的评审标准,计算机视觉和自然语言处理领域,以及最近的NeurIPS会议,都有专门致力于建立新Benchmark数据集和任务的Conference Track。然而在图机器学习领域,我们还没有类似的发表渠道。

Workshop on Graph Learning Benchmarks(GLB)致力于征集新的图机器学习任务或新的图结构数据集方面的贡献,这些任务和数据有潜力(i)帮助理解图表示模型在不同问题集合上的性能和局限性;(ii)为各种模型提供Benchmark评估支持。我们还欢迎基于Data-Cenetric方法的图学习的贡献,例如收集、注释、清洗、增强和合成图结构数据的新方法。

研讨会官网地址:https://graph-learning-benchmarks.github.io/

在过去的两年里,我们成功举办了研讨会的第一届和第二届,吸引了图机器学习领域的大量关注。

在过去两届,我们有幸邀请到了众多图学习领域的著名学者,包括Jure Leskovec (Stanford),Leman Akoglu (CMU),Michael Bronstein (Oxford),Stephan Günnemann (TU Munich),以及Tina Eliassi-Rad (Northeastern)作为演讲嘉宾,以及唐杰 (清华),孙怡舟(UCLA),Xin Luna Dong (Meta),Petar Veličković (DeepMind & Cambridge), Minjie Wang (Amazon DGL Team),以及Rose Yu (UCSD)作为圆桌讨论嘉宾,同时发表了来自世界各地作者的相关论文约三十篇。

我们期待与会者为图学习领域带来创新的数据集和任务,推动研究和实践的发展。我们鼓励来自学术界和工业界的研究者、工程师和实践者参与本次研讨会,分享他们的见解和经验。

参加本次研讨会,您将有机会与图学习领域的专家和同行互动,了解最新的研究成果和应用案例。我们诚挚邀请您提交高质量的论文,共同探讨图学习基准的未来发展趋势。

Call for Papers

我们特别(但不仅限于)征集对以下至少一个方面作出贡献的研究:

  • Real-World Graph Datasets: Novel real-world graph-structured datasets — especially large-scale, application-oriented, and publicly accessible datasets.

  • Synthetic Graph Datasets: Synthetic graph-structured datasets that are well-supported by graph theory, network science, or empirical studies, and can be used to reveal limitations of existing graph learning methods.

  • Graph Benchmarking Software Packages: Software packages which enable streamlined benchmarking large-scale online graphs, crawling or crowdsourcing of graph data, and generation of realistic synthetic graphs.

  • Data Collection: Novel approaches to collect and annotate graph-structured data. Crowdsourcing and sampling methods on large networks.

  • Data Processing: Novel approaches to clean and impute noisy/missing graph-structured data. Data augmentation approaches for self-supervision.

  • Graph Learning Tasks: New learning tasks and applications on different types of graphs, at different levels (e.g., node, edge, and (sub)graph), with a special focus on real-world and industry-oriented problems.

  • Evaluation Metrics: New evaluation procedures and metrics of graph learning associated with the various tasks and datasets.

  • Benchmarking Studies: Studies that benchmark multiple graph ML methods (especially graph neural networks) on non-trivial tasks and datasets. We explicitly encourage works that reveal limitations of existing models, optimize matches between model design and problems, and other novel findings about the behaviors of existing models on various tasks or datasets.

  • Graph Learning Task Taxonomy: Discussions towards a more comprehensive and fine-grained taxonomy of graph learning tasks.

重要日期

提交截止日期:2023年5月26日

录用通知:2023年6月13日

Camera Ready截止日期:2023年6月27日

格式

  • 论文不超过4页(不包括参考文献和附录),使用ACM “sigconf” LaTeX模板(参见KDD 2023的指导)。

  • 本次研讨会为Non-Archival性质,与会议和期刊发表不冲突。近期已经在会议或期刊发表的相关研究成果也欢迎投稿。

  • 为方便数据/代码共享,提交为单向盲审。审稿人是匿名的,但作者在提交中无需匿名。

  • 强烈建议作者在提交中包含相应的数据集和代码作为补充材料。对于大型数据集或代码仓库,作者可以通过Github、Google Drive、Dropbox、OneDrive或Box提供外部链接。我们限制存储平台的选择是出于安全考虑。如果上述平台都不适用,请发送电子邮件给组织者。

  • 如果数据无法公开提供,需要额外的章节说明已建立基准的结果如何推广到其他图数据。

论文提交

摘要和论文可通过CMT提交:https://cmt3.research.microsoft.com/GLB2023

组织者

图片

有关以往研讨会详细信息,请访问此网站:https://graph-learning-benchmarks.github.io/all-editions

如果您有任何问题,请通过此电子邮件地址与我们联系:glb23-organizers@umich.edu

相关文章:

Call for Papers丨第三届GLB@KDD‘23 Workshop

鉴于介绍新数据集和Benchmark研究往往需要不同于常规论文的评审标准,计算机视觉和自然语言处理领域,以及最近的NeurIPS会议,都有专门致力于建立新Benchmark数据集和任务的Conference Track。然而在图机器学习领域,我们还没有类似的…...

【多线程】单例模式

目录 饿汉模式 懒汉模式-单线程版 懒汉模式-多线程版 懒汉模式-多线程版(改进) 单例是一种设计模式。 啥是设计模式 ? 设计模式好比象棋中的 " 棋谱 ". 红方当头炮 , 黑方马来跳 . 针对红方的一些走法 , 黑方应招的时候有一些固定的套路. 按照套路来走局势…...

7搜索管理

7搜索管理 7.1 准备环境 7.1.1 创建映射 创建xc_course索引库。 创建如下映射 post:http://localhost:9200/xc_course/doc/_mapping 参考 “资料”–》搜索测试-初始化数据.txt { "properties": { "description": { "type": &…...

在Pytorch中使用Tensorboard

Tensorboard是一款深度学习可视化软件,目前主要使用了它的可视化模型, 可视化模型权重和可视化损失函数功能。 x.1 tensorboard初始化 tensorboard初始化需要导入SummaryWriter包并指定存储位置和开放端口号。 from torch.utils.tensorboard import SummaryWrite…...

[笔记]深入解析Windows操作系统《四》管理机制

文章目录 前言4.1注册表查看和修改注册表注册表用法注册表数据类型注册表逻辑结构HKEY_CURRENT_USERHKEY_USERS 实验:观察轮廓加载和卸载HKEY_CLASSES_ROOTHKEY_LOCAL_MACHINE 实验:离线方式或远程编辑BCDHKEY_CURRENT_CONFIGHKEY_PERFORMANCE_DATA 前言 本章讲述了…...

【小沐学Python】Python实现在线英语翻译功能

文章目录 1、简介2、在线翻译接口2.1 Google Translate API2.2 Microsoft Translator API2.2.1 开发简介2.2.2 开发费用2.2.3 开发API 2.3 百度翻译开放平台 API2.3.1 开发简介2.3.2 开发费用2.3.3 开发API 2.4 Tencent AI 开放平台的翻译 API2.4.1 开发简介2.4.2 开发API 2.5 …...

k8s中pod使用详解

一、前言 在之前k8s组件一篇中,我们谈到了pod这个组件,了解到pod是k8s中资源管理的最小单位,可以说Pod是整个k8s对外提供服务的最基础的个体,有必要对Pod做深入的学习和探究。 二、再看k8s架构图 为了加深对k8s中pod的理解,再来回顾下k8s的完整架构 三、pod特点 结合上面这…...

案例说明:vue中Element UI下拉列表el-option中的key、value、label含义各是什么

可以简单理解为&#xff1a;label 是给用户展示的东西&#xff0c;value是前端往后端传递的真实值 <template><div><el-page-header back"goBack" content"注册"></el-page-header><el-divider></el-divider><el-…...

idea创建javaweb项目步骤超详细(2022最新版本)

目录 前言必读 一、新建文件 1.在idea里面点击文件-新建-项目 2.新建项目-更改名称为自己想要的项目名称-创建 3.右键自己建立的项目-添加框架支持&#xff08;英文版是Add Framework Support...&#xff09; 4.勾选Web应用程序-确定 5.建立成功界面 二、配置tomcat 6.…...

「SAP ABAP」OPEN SQL(六)【DELETE语句 | MODIFY语句】

💂作者简介: THUNDER王,一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学本科在读,同时任汉硕云(广东)科技有限公司ABAP开发顾问。在学习工作中,我通常使用偏后端的开发语言ABAP,SQL进行任务的完成,对SAP企业管理系统,SAP ABAP开发和数据库具有较…...

SpringCloud --- Feign远程调用

一、RestTemplate问题 先来看我们以前利用RestTemplate发起远程调用的代码&#xff1a; 存在下面的问题&#xff1a; 代码可读性差&#xff0c;编程体验不统一参数复杂URL难以维护 Feign是一个声明式的http客户端&#xff0c;官方地址&#xff1a;GitHub - OpenFeign/feign:…...

基于单片机的数字频率计设计

数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号&#xff0c;方波信号及其他各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试…...

我看看哪个靓仔还没把Github Copilot用起来?

本人经常分享有价值的生产力工具、技术、好物与书籍&#xff0c;可关注同名公众&#x1f42d;并设为&#x1f31f;星标&#xff0c;第一时间获得更新 Github Copilot 是一个AI编程助手&#xff0c;其使用 OpenAI CodeX 在你的编辑器中实时建议代码或给你实现整个功能。 视频版介…...

C++系列一: C++简介

C入门简介 1. C语言的特点2. C编译器3. 第一个 C 程序4. 总结&#xff08;手稿版&#xff09; C 是一种高级编程语言&#xff0c;是C语言的扩展和改进版本&#xff0c;由Bjarne Stroustrup于1983年在贝尔实验室为了支持C语言中的面向对象编程而创建。C 既能够进行底层的系统编程…...

信通初试第一:无科研无竞赛一战上岸上海交大819学硕感悟

笔者来自通信考研小马哥23上交819全程班学员 信通初试第一&#xff1a;无科研无竞赛一战上岸上海交大819学硕感悟 原创2023-04-27 11:04通信考研小马哥 笔者来自通信考研小马哥23上交819全程班学员 本人情况&#xff1a; 本人是19届交本&#xff0c;本科成绩很差&#xff0c;…...

Spring —— Spring Boot 配置文件

JavaEE传送门 JavaEE Spring —— Bean 作用域和生命周期 Spring —— Spring Boot 创建和使用 目录 Spring Boot 配置文件Spring Boot 配置文件格式properties配置文件properties 基本语法properties 缺点 yml 配置文件yml 基本语法yml 配置不同类型数据及 nullyml 配置对象…...

Python 网络爬虫与数据采集(一)

Python 网络爬虫与数据采集 第1章 序章 网络爬虫基础1 爬虫基本概述1.1 爬虫是什么1.2 爬虫可以做什么1.3 爬虫的分类1.4 爬虫的基本流程1.4.1 浏览网页的流程1.4.2 爬虫的基本流程 1.5 爬虫与反爬虫1.5.1 爬虫的攻与防1.5.2 常见的反爬与反反爬 1.6 爬虫的合法性与 robots 协议…...

2023年6月DAMA-CDGP数据治理专家认证请尽快报名啦!

目前6月DAMA-CDGP数据治理认证考试开放报名地区有&#xff1a;北京、上海、广州、深圳、长沙、呼和浩特。 目前南京、济南、西安、杭州等地区还在接近开考人数中&#xff0c;打算参加6月考试的朋友们可以抓紧时间报名啦&#xff01;&#xff01;&#xff01; 5月初&#xff0c;…...

STM32+esp8266,让你的STM32开发板连接网络-----esp8266

分享一下&#xff0c;STM32开发板连接网络的第一种方法&#xff1a;连接esp8266。 esp8266与STM32利用串口通信连接&#xff0c;esp8266连接网络&#xff0c;把收到的数据通过串口的方式传输给STM32&#xff0c;之后STM32接收到消息做出对应的反应。 使用到的开发板如图&…...

分布式缓存的基础知识

前言 现代互联网应用中&#xff0c;分布式缓存成为了必不可少的一环。它通过在多台服务器之间共享数据&#xff0c;避免了网络通信的高延迟和低带宽的性能问题。本文将介绍分布式缓存的基础知识&#xff0c;包括缓存机制、常见的缓存策略以及缓存的使用场景。 缓存机制 缓存是…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...