Call for Papers丨第三届GLB@KDD‘23 Workshop

鉴于介绍新数据集和Benchmark研究往往需要不同于常规论文的评审标准,计算机视觉和自然语言处理领域,以及最近的NeurIPS会议,都有专门致力于建立新Benchmark数据集和任务的Conference Track。然而在图机器学习领域,我们还没有类似的发表渠道。
Workshop on Graph Learning Benchmarks(GLB)致力于征集新的图机器学习任务或新的图结构数据集方面的贡献,这些任务和数据有潜力(i)帮助理解图表示模型在不同问题集合上的性能和局限性;(ii)为各种模型提供Benchmark评估支持。我们还欢迎基于Data-Cenetric方法的图学习的贡献,例如收集、注释、清洗、增强和合成图结构数据的新方法。
研讨会官网地址:https://graph-learning-benchmarks.github.io/
在过去的两年里,我们成功举办了研讨会的第一届和第二届,吸引了图机器学习领域的大量关注。
在过去两届,我们有幸邀请到了众多图学习领域的著名学者,包括Jure Leskovec (Stanford),Leman Akoglu (CMU),Michael Bronstein (Oxford),Stephan Günnemann (TU Munich),以及Tina Eliassi-Rad (Northeastern)作为演讲嘉宾,以及唐杰 (清华),孙怡舟(UCLA),Xin Luna Dong (Meta),Petar Veličković (DeepMind & Cambridge), Minjie Wang (Amazon DGL Team),以及Rose Yu (UCSD)作为圆桌讨论嘉宾,同时发表了来自世界各地作者的相关论文约三十篇。
我们期待与会者为图学习领域带来创新的数据集和任务,推动研究和实践的发展。我们鼓励来自学术界和工业界的研究者、工程师和实践者参与本次研讨会,分享他们的见解和经验。
参加本次研讨会,您将有机会与图学习领域的专家和同行互动,了解最新的研究成果和应用案例。我们诚挚邀请您提交高质量的论文,共同探讨图学习基准的未来发展趋势。
Call for Papers
我们特别(但不仅限于)征集对以下至少一个方面作出贡献的研究:
-
Real-World Graph Datasets: Novel real-world graph-structured datasets — especially large-scale, application-oriented, and publicly accessible datasets.
-
Synthetic Graph Datasets: Synthetic graph-structured datasets that are well-supported by graph theory, network science, or empirical studies, and can be used to reveal limitations of existing graph learning methods.
-
Graph Benchmarking Software Packages: Software packages which enable streamlined benchmarking large-scale online graphs, crawling or crowdsourcing of graph data, and generation of realistic synthetic graphs.
-
Data Collection: Novel approaches to collect and annotate graph-structured data. Crowdsourcing and sampling methods on large networks.
-
Data Processing: Novel approaches to clean and impute noisy/missing graph-structured data. Data augmentation approaches for self-supervision.
-
Graph Learning Tasks: New learning tasks and applications on different types of graphs, at different levels (e.g., node, edge, and (sub)graph), with a special focus on real-world and industry-oriented problems.
-
Evaluation Metrics: New evaluation procedures and metrics of graph learning associated with the various tasks and datasets.
-
Benchmarking Studies: Studies that benchmark multiple graph ML methods (especially graph neural networks) on non-trivial tasks and datasets. We explicitly encourage works that reveal limitations of existing models, optimize matches between model design and problems, and other novel findings about the behaviors of existing models on various tasks or datasets.
-
Graph Learning Task Taxonomy: Discussions towards a more comprehensive and fine-grained taxonomy of graph learning tasks.
重要日期
提交截止日期:2023年5月26日
录用通知:2023年6月13日
Camera Ready截止日期:2023年6月27日
格式
-
论文不超过4页(不包括参考文献和附录),使用ACM “sigconf” LaTeX模板(参见KDD 2023的指导)。
-
本次研讨会为Non-Archival性质,与会议和期刊发表不冲突。近期已经在会议或期刊发表的相关研究成果也欢迎投稿。
-
为方便数据/代码共享,提交为单向盲审。审稿人是匿名的,但作者在提交中无需匿名。
-
强烈建议作者在提交中包含相应的数据集和代码作为补充材料。对于大型数据集或代码仓库,作者可以通过Github、Google Drive、Dropbox、OneDrive或Box提供外部链接。我们限制存储平台的选择是出于安全考虑。如果上述平台都不适用,请发送电子邮件给组织者。
-
如果数据无法公开提供,需要额外的章节说明已建立基准的结果如何推广到其他图数据。
论文提交
摘要和论文可通过CMT提交:https://cmt3.research.microsoft.com/GLB2023
组织者

有关以往研讨会详细信息,请访问此网站:https://graph-learning-benchmarks.github.io/all-editions
如果您有任何问题,请通过此电子邮件地址与我们联系:glb23-organizers@umich.edu
相关文章:
Call for Papers丨第三届GLB@KDD‘23 Workshop
鉴于介绍新数据集和Benchmark研究往往需要不同于常规论文的评审标准,计算机视觉和自然语言处理领域,以及最近的NeurIPS会议,都有专门致力于建立新Benchmark数据集和任务的Conference Track。然而在图机器学习领域,我们还没有类似的…...
【多线程】单例模式
目录 饿汉模式 懒汉模式-单线程版 懒汉模式-多线程版 懒汉模式-多线程版(改进) 单例是一种设计模式。 啥是设计模式 ? 设计模式好比象棋中的 " 棋谱 ". 红方当头炮 , 黑方马来跳 . 针对红方的一些走法 , 黑方应招的时候有一些固定的套路. 按照套路来走局势…...
7搜索管理
7搜索管理 7.1 准备环境 7.1.1 创建映射 创建xc_course索引库。 创建如下映射 post:http://localhost:9200/xc_course/doc/_mapping 参考 “资料”–》搜索测试-初始化数据.txt { "properties": { "description": { "type": &…...
在Pytorch中使用Tensorboard
Tensorboard是一款深度学习可视化软件,目前主要使用了它的可视化模型, 可视化模型权重和可视化损失函数功能。 x.1 tensorboard初始化 tensorboard初始化需要导入SummaryWriter包并指定存储位置和开放端口号。 from torch.utils.tensorboard import SummaryWrite…...
[笔记]深入解析Windows操作系统《四》管理机制
文章目录 前言4.1注册表查看和修改注册表注册表用法注册表数据类型注册表逻辑结构HKEY_CURRENT_USERHKEY_USERS 实验:观察轮廓加载和卸载HKEY_CLASSES_ROOTHKEY_LOCAL_MACHINE 实验:离线方式或远程编辑BCDHKEY_CURRENT_CONFIGHKEY_PERFORMANCE_DATA 前言 本章讲述了…...
【小沐学Python】Python实现在线英语翻译功能
文章目录 1、简介2、在线翻译接口2.1 Google Translate API2.2 Microsoft Translator API2.2.1 开发简介2.2.2 开发费用2.2.3 开发API 2.3 百度翻译开放平台 API2.3.1 开发简介2.3.2 开发费用2.3.3 开发API 2.4 Tencent AI 开放平台的翻译 API2.4.1 开发简介2.4.2 开发API 2.5 …...
k8s中pod使用详解
一、前言 在之前k8s组件一篇中,我们谈到了pod这个组件,了解到pod是k8s中资源管理的最小单位,可以说Pod是整个k8s对外提供服务的最基础的个体,有必要对Pod做深入的学习和探究。 二、再看k8s架构图 为了加深对k8s中pod的理解,再来回顾下k8s的完整架构 三、pod特点 结合上面这…...
案例说明:vue中Element UI下拉列表el-option中的key、value、label含义各是什么
可以简单理解为:label 是给用户展示的东西,value是前端往后端传递的真实值 <template><div><el-page-header back"goBack" content"注册"></el-page-header><el-divider></el-divider><el-…...
idea创建javaweb项目步骤超详细(2022最新版本)
目录 前言必读 一、新建文件 1.在idea里面点击文件-新建-项目 2.新建项目-更改名称为自己想要的项目名称-创建 3.右键自己建立的项目-添加框架支持(英文版是Add Framework Support...) 4.勾选Web应用程序-确定 5.建立成功界面 二、配置tomcat 6.…...
「SAP ABAP」OPEN SQL(六)【DELETE语句 | MODIFY语句】
💂作者简介: THUNDER王,一名热爱财税和SAP ABAP编程以及热爱分享的博主。目前于江西师范大学本科在读,同时任汉硕云(广东)科技有限公司ABAP开发顾问。在学习工作中,我通常使用偏后端的开发语言ABAP,SQL进行任务的完成,对SAP企业管理系统,SAP ABAP开发和数据库具有较…...
SpringCloud --- Feign远程调用
一、RestTemplate问题 先来看我们以前利用RestTemplate发起远程调用的代码: 存在下面的问题: 代码可读性差,编程体验不统一参数复杂URL难以维护 Feign是一个声明式的http客户端,官方地址:GitHub - OpenFeign/feign:…...
基于单片机的数字频率计设计
数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号及其他各种单位时间内变化的物理量。在进行模拟、数字电路的设计、安装、调试…...
我看看哪个靓仔还没把Github Copilot用起来?
本人经常分享有价值的生产力工具、技术、好物与书籍,可关注同名公众🐭并设为🌟星标,第一时间获得更新 Github Copilot 是一个AI编程助手,其使用 OpenAI CodeX 在你的编辑器中实时建议代码或给你实现整个功能。 视频版介…...
C++系列一: C++简介
C入门简介 1. C语言的特点2. C编译器3. 第一个 C 程序4. 总结(手稿版) C 是一种高级编程语言,是C语言的扩展和改进版本,由Bjarne Stroustrup于1983年在贝尔实验室为了支持C语言中的面向对象编程而创建。C 既能够进行底层的系统编程…...
信通初试第一:无科研无竞赛一战上岸上海交大819学硕感悟
笔者来自通信考研小马哥23上交819全程班学员 信通初试第一:无科研无竞赛一战上岸上海交大819学硕感悟 原创2023-04-27 11:04通信考研小马哥 笔者来自通信考研小马哥23上交819全程班学员 本人情况: 本人是19届交本,本科成绩很差,…...
Spring —— Spring Boot 配置文件
JavaEE传送门 JavaEE Spring —— Bean 作用域和生命周期 Spring —— Spring Boot 创建和使用 目录 Spring Boot 配置文件Spring Boot 配置文件格式properties配置文件properties 基本语法properties 缺点 yml 配置文件yml 基本语法yml 配置不同类型数据及 nullyml 配置对象…...
Python 网络爬虫与数据采集(一)
Python 网络爬虫与数据采集 第1章 序章 网络爬虫基础1 爬虫基本概述1.1 爬虫是什么1.2 爬虫可以做什么1.3 爬虫的分类1.4 爬虫的基本流程1.4.1 浏览网页的流程1.4.2 爬虫的基本流程 1.5 爬虫与反爬虫1.5.1 爬虫的攻与防1.5.2 常见的反爬与反反爬 1.6 爬虫的合法性与 robots 协议…...
2023年6月DAMA-CDGP数据治理专家认证请尽快报名啦!
目前6月DAMA-CDGP数据治理认证考试开放报名地区有:北京、上海、广州、深圳、长沙、呼和浩特。 目前南京、济南、西安、杭州等地区还在接近开考人数中,打算参加6月考试的朋友们可以抓紧时间报名啦!!! 5月初,…...
STM32+esp8266,让你的STM32开发板连接网络-----esp8266
分享一下,STM32开发板连接网络的第一种方法:连接esp8266。 esp8266与STM32利用串口通信连接,esp8266连接网络,把收到的数据通过串口的方式传输给STM32,之后STM32接收到消息做出对应的反应。 使用到的开发板如图&…...
分布式缓存的基础知识
前言 现代互联网应用中,分布式缓存成为了必不可少的一环。它通过在多台服务器之间共享数据,避免了网络通信的高延迟和低带宽的性能问题。本文将介绍分布式缓存的基础知识,包括缓存机制、常见的缓存策略以及缓存的使用场景。 缓存机制 缓存是…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...
零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...
《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...
