当前位置: 首页 > news >正文

Linux内核进程创建流程

本文代码基于Linux5.10
内容主要参考《Linux内核深度解析》余华兵

当Linux内核要创建一个新进程时, 流程大致如下

ret = fork();
if (ret == 0) {/* 子进程装载程序 */ret = execve(filename, argv, envp);
} else if (ret > 0) {/* 父进程 */
}

大致可以分为创建新进程和装载程序这两个过程。

创建新进程

Linux中创建新进程有两个系统调用, 分别是clone和fork, 其定义如下:

kernel/fork.c
SYSCALL_DEFINE0(fork) {#ifdef CONFIG_MMUstruct kernel_clone_args args = {.exit_signal = SIGCHLD,};return kernel_clone(&args);
#else/* can not support in nommu mode */return -EINVAL;
#endif
}
SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,int, stack_size,int __user *, parent_tidptr,int __user *, child_tidptr,unsigned long, tls) {struct kernel_clone_args args = {.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),.pidfd		= parent_tidptr,.child_tid	= child_tidptr,.parent_tid	= parent_tidptr,.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),.stack		= newsp,.tls		= tls,};return kernel_clone(&args);
}

可以理解为fork是clone的简化版本, clone可以更精确的控制创建进程的行为,我们在创建线程时,就是使用的clone(没错, 在Linux里面, 线程实际上也是进程)。

clone 和 fork 都会调用kernel_clone 这个函数去创建进程,只不过两者传递的参数不同。

Linux 目前通过kernel_clone_args 这个数据结构来传递参数。

include/linux/sched/task.h
struct kernel_clone_args {u64 flags;int __user *pidfd;int __user *child_tid;int __user *parent_tid;int exit_signal;unsigned long stack;unsigned long stack_size;unsigned long tls;pid_t *set_tid;/* Number of elements in *set_tid */size_t set_tid_size;int cgroup;struct cgroup *cgrp;struct css_set *cset;
};

flags : clone 标志。

stack : 只在创建线程时有意义, 用来指定线程的用户栈的地址

stack_size:只在创建线程时有意义, 用来指定线程的用户栈的大小

创建新进程的流程大致如下:

  1. 调用函数copy_process 创建新进程
  2. 调用函数wake_up_new_task 唤醒新进程。

copy process

copy process的流程如下:

1.检查标志是否合法。

kernel/fork.c/** Don't allow sharing the root directory with processes in a different* namespace*/if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))return ERR_PTR(-EINVAL);if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))return ERR_PTR(-EINVAL);.....

2.dup_task_struct。 已当前进程为模板, 创建task_struct数据结构

这里面会分配task_struct 的数据结构, 并分配内核栈。

内核栈也是一个slab。

kernel/fork.c
static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,int node)
{unsigned long *stack;stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);stack = kasan_reset_tag(stack);tsk->stack = stack;return stack;
}
void thread_stack_cache_init(void)
{thread_stack_cache = kmem_cache_create_usercopy("thread_stack",THREAD_SIZE, THREAD_SIZE, 0, 0,THREAD_SIZE, NULL);BUG_ON(thread_stack_cache == NULL);
}

3.检查用户的进程数量限制

kernel/fork.cif (atomic_read(&p->real_cred->user->processes) >=task_rlimit(p, RLIMIT_NPROC)) {if (p->real_cred->user != INIT_USER &&!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))goto bad_fork_free;}

在用户空间, 可以通过ulimit -u 来设置用户最大可以创建的进程数量。

4.copy_creds

调用copy_cread 复制或者共享证书, 如果新进程和当前进程属于同一个线程组, 那么他们共享证书。

5. 检查线程数量限制

kernel/fork.cif (data_race(nr_threads >= max_threads))goto bad_fork_cleanup_count;nr_threads 会在每次创建进程/线程后+1

6.sched_fork

设置调度器相关的参数

7.复制或者共享资源

这里会复制虚拟内存,文件, 文件系统数据, 信号处理数据等各种资源。 这里重点介绍一下copy_thread 这个流程, 这里会复制进程的各种寄存器。

arch/arm64/kernel/process.c
int copy_thread(unsigned long clone_flags, unsigned long stack_start,unsigned long stk_sz, struct task_struct *p, unsigned long tls)
{struct pt_regs *childregs = task_pt_regs(p);memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));   /*        1         *//** In case p was allocated the same task_struct pointer as some* other recently-exited task, make sure p is disassociated from* any cpu that may have run that now-exited task recently.* Otherwise we could erroneously skip reloading the FPSIMD* registers for p.*/fpsimd_flush_task_state(p);ptrauth_thread_init_kernel(p);if (likely(!(p->flags & PF_KTHREAD))) {            /*        2         */         *childregs = *current_pt_regs();childregs->regs[0] = 0;													/*        3         *//** Read the current TLS pointer from tpidr_el0 as it may be* out-of-sync with the saved value.*/*task_user_tls(p) = read_sysreg(tpidr_el0);if (stack_start) {                         /*        4         */if (is_compat_thread(task_thread_info(p)))childregs->compat_sp = stack_start;elsechildregs->sp = stack_start;}/** If a TLS pointer was passed to clone, use it for the new* thread.*/if (clone_flags & CLONE_SETTLS)p->thread.uw.tp_value = tls;} else {                /*        5         *//*  * A kthread has no context to ERET to, so ensure any buggy* ERET is treated as an illegal exception return.** When a user task is created from a kthread, childregs will* be initialized by start_thread() or start_compat_thread().*/memset(childregs, 0, sizeof(struct pt_regs));childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;p->thread.cpu_context.x19 = stack_start;p->thread.cpu_context.x20 = stk_sz;}p->thread.cpu_context.pc = (unsigned long)ret_from_fork; /*        6         */p->thread.cpu_context.sp = (unsigned long)childregs;ptrace_hw_copy_thread(p);return 0;
}

用户态相关的运行环境缓存在pt_regs 中, 内核态保存在thread结构体中。

(1) 获取pt_regs, 并初始化thread 结构体

(2) 对于用户进程的处理

(3) 设置返回值为0。(子进程fork返回0就是在这里设置)

(4) 设置线程的用户栈

(5) 对于内核进程的处理, 这里X19存储线程函数的地址,X20存放线程函数的参数

(6) 设置内核态的PC和SP值, 在发生进程切换时, 会切到原因的地方去

wake up new task

在新进程创建之后,会尝试去唤醒它,让它尽快得到执行, 其流程大致如下:

新进程第一次运行

前文说到,copy_thread是会把新进程的PC设置为ret_from_fork。

arch/arm64/kernel/entry.S
/** This is how we return from a fork.*/
SYM_CODE_START(ret_from_fork)bl	schedule_tailcbz	x19, 1f				// not a kernel threadmov	x0, x20blr	x19
1:	get_current_task tskb	ret_to_user
SYM_CODE_END(ret_from_fork)

在ret_from_fork中, 首先进行调度切换的清理工作(schedule_tail)。 如果是用户进程,调用ret_to_user返回用户空间, 如果是内核进程,X19存储线程函数的地址,X20存放线程函数的参数, 这里会跳转到x19所存储的函数地址执行。

装载程序

一般来说, 用户层会调用execve或者execveat 执行某个具体的程序。

int execve(const char *filename, char *const argv[ ], char *const envp[ ]);

用户程序一般是一个elf文件, 内核会按照elf文件的格式去解析它, 并设置PC到对应的entry。这部分内容不在此详细说明。

实例: init 进程的创建和运行

init 是kernel运行的第一个进程, 我们来看看它是怎么创建和运行起来。

rest_init中,会调用kernel_thread 创建init进程

init/main.c
noinline void __ref rest_init(void)
{.....pid = kernel_thread(kernel_init, NULL, CLONE_FS);.....
}pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
{struct kernel_clone_args args = {.flags		= ((lower_32_bits(flags) | CLONE_VM |CLONE_UNTRACED) & ~CSIGNAL),.exit_signal	= (lower_32_bits(flags) & CSIGNAL),.stack		= (unsigned long)fn,.stack_size	= (unsigned long)arg,};return kernel_clone(&args);
}

可以看到kernel_thread其实也是调用kernel_clone创建线程,其中stack被设置成了入口函数,stack_size被设置成了参数。

在kernel_init中, 会尝试装载init进程。

init/main.c
static int __ref kernel_init(void *unused)
{
.....
if (ramdisk_execute_command) {ret = run_init_process(ramdisk_execute_command);if (!ret)return 0;pr_err("Failed to execute %s (error %d)\n",ramdisk_execute_command, ret);}
....
}

装载完成之后, 就会调转到用户态的init进程执行了。

相关文章:

Linux内核进程创建流程

本文代码基于Linux5.10 内容主要参考《Linux内核深度解析》余华兵 当Linux内核要创建一个新进程时, 流程大致如下 ret fork(); if (ret 0) {/* 子进程装载程序 */ret execve(filename, argv, envp); } else if (ret > 0) {/* 父进程 */ } 大致可以分为创建新…...

【03.04】大数据教程--HTTP协议和静态Web服务器

HTTP协议和静态Web服务器 HTTP(Hypertext Transfer Protocol)是一种用于传输超文本的协议,它是Web上的基础通信协议。静态Web服务器是指能够提供静态内容(如HTML、CSS、JavaScript和图像文件)的服务器。 在本教程中&am…...

数据共享传输:台式机和笔记本同步文件!

为什么要在台式机和笔记本同步文件? “我想在台式机和笔记本同步文件。因为我工作时使用笔记本,在家里使用安装了Windows 10系统的台式机,我想要在笔记本和台式机之间同步应用程序、游戏、文档等。有没有一种可以在台式机和笔记本同步文件的…...

java设计模式(十二)代理模式

目录 定义模式结构角色职责代码实现静态代理动态代理jdk动态代理cglib代理 适用场景优缺点 定义 代理模式给某一个对象提供一个代理对象,并由代理对象控制对原对象的引用。说简单点,代理模式就是设置一个中间代理来控制访问原目标对象,以达到…...

Umi微前端水印踩坑以及解决方案

最近公司需要在管理后台加一个水印方案~ 项目用的umi方案,以为就是改一个配置的问题,后来发现坑点还蛮多~ 希望此稳定能帮助到用umi 的你们. 一. 先来说说心路历程 坑点1 umi的水印适配只能在layout中进行配置,也就是路由配置中layout为false的页面无法配置水印,比如说登录页…...

Android RK3588-12 hdmi-in Camera方式支持NV24格式

hdmi-in Camera方式支持NV24格式 modified: hardware/interfaces/camera/device/3.4/default/ExternalCameraDevice.cpp modified: hardware/interfaces/camera/device/3.4/default/ExternalCameraDeviceSession.cpp diff --git a/hardware/interfaces/camera/device/3.4…...

Hive窗口函数详细介绍

文章目录 Hive窗口函数概述样本数据表结构表数据 窗口函数窗口聚合函数count()SQL演示 sum()SQL演示 avg()SQL演示 min()SQL演示 max()SQL演示 窗口分析函数first_value() 取开窗第一个值应用场景SQL演示 last_value()取开窗最后一个值应用场景SQL演示 lag(col, n, default_val…...

牛客网【c语言练习】

单选题 下面代码段的输出是(-12 ) int main() {int a3; printf("%d\n",(aa-a*a)); } aa-9,此时还是等于3,因为a*a只是运算,并没有赋值;之后再算a-9,运算之前a等于3,运算…...

C++类和对象(上)

文章目录 🦍1. 面向过程和面向对象🦧2. 类的引入🐶3. 类的定义🦮4. 类的访问控制和封装🍖4.1 访问限定符🍖4.2 封装 🐩5. 类的作用域🐅6. 类的实例化🐄7. 类的大小计算&a…...

JavaScript 数据透视表 DHTMLX Pivot Crack

DHTMLX Pivot JavaScript 数据透视表 - 强大的数据汇总和报告 使用我们的高速 JavaScript/HTML5 Pivot 组件可视化您的复杂数据,从而提高您的商业智能。 它可以帮助您以方便的方式汇总大型数据集。 主要特征 纯 JavaScript 库,可轻松与任何服务器端集成…...

QT链接库设置

以windows 平台为例&#xff0c;在.pro 文件中&#xff1a; 1 增加 INCLUDEPATH <头文件路径> DEPENDPATH <头文件路径> 2 LIBS -L<库目录路径> -l<库得名字> 3 设置MT、MTD、MD、MDD运行时库 win32:CONFIG(debug, debug|release): { QMAKE_CFLAGS_…...

零点起飞学Android——期末考试课本复习重点

目录 第一章 认识Android第二章 Android常见界面布局第三章 Android常用基本控件第四章 Android 高级控件第五章 Android菜单和对话框 第一章 认识Android 1. Android 界面设计被称为______。 答案&#xff1a;布局 2. Android中常见的布局包括______、______ 、______ 、____…...

Redis为什么快?

目录 Redis为什么快&#xff1f;渐进式ReHash全局哈希表渐进式ReHash 缓存时间戳 Redis为什么快&#xff1f; 纯内存访问&#xff1b; 单线程避免上下文切换&#xff1b; 渐进式ReHash、缓存时间戳&#xff1b; 前面两个都比较好理解&#xff0c;下面我们主要来说下 渐进式…...

Zabbix从入门到精通以及案例实操系列

1、Zabbix入门 1.1、Zabbix概述 Zabbix是一款能够监控各种网络参数以及服务器健康性和完整性的软件。Zabbix使用灵活的通知机制&#xff0c;允许用户为几乎任何事件配置基于邮件的告警。这样可以快速反馈服务器的问题。基于已存储的数据&#xff0c;Zabbix提供了出色的报告和…...

水声声波频率如何划分?水声功率放大器可将频率放大到20MHz吗?

水声声波频率如何划分&#xff1f;水声功率放大器可将频率放大到20MHz吗&#xff1f; 现如今我们可以在地球任意地区实现通信&#xff0c;是因为电磁波的作用。但是我们都知道海洋占了全球十分之七面积&#xff0c;电磁波在水下衰减速度太快&#xff0c;无法做到远距离传输&am…...

网络攻防技术--论文阅读--《基于自动数据分割和注意力LSTM-CNN的准周期时间序列异常检测》

英文题目&#xff1a;Anomaly Detection in Quasi-Periodic Time Series based on Automatic Data Segmentation and Attentional LSTM-CNN 论文地址&#xff1a;Anomaly Detection in Quasi-Periodic Time Series Based on Automatic Data Segmentation and Attentional LST…...

C++ 学习 ::【基础篇:08】:C++ 中 struct 结构体的认识【面试考点:C 与 C++ 中结构体的区别】

本系列 C 相关文章 仅为笔者学习笔记记录&#xff0c;用自己的理解记录学习&#xff01;C 学习系列将分为三个阶段&#xff1a;基础篇、STL 篇、高阶数据结构与算法篇&#xff0c;相关重点内容如下&#xff1a; 基础篇&#xff1a;类与对象&#xff08;涉及C的三大特性等&#…...

Electron开发:打包和发布 Electron 应用

https://start.spring.io/ 在线数据分析网站 https://tj.aldwx.com/ https://www.spsspro.com/ win10如何分屏 拖到边缘 Electron 环境搭建 https://www.electronjs.org/zh/docs/latest/tutorial/%E6%89%93%E5%8C%85%E6%95%99%E7%A8%8B electron 隐藏菜单 electron 标题栏 设…...

【每日一题Day222】LC1110删点成林 | dfs后序

删点成林【LC1110】 给出二叉树的根节点 root&#xff0c;树上每个节点都有一个不同的值。 如果节点值在 to_delete 中出现&#xff0c;我们就把该节点从树上删去&#xff0c;最后得到一个森林&#xff08;一些不相交的树构成的集合&#xff09;。 返回森林中的每棵树。你可以按…...

[ChatGPT] 从 GPT-3.5 到 GPT-5 的进化之路 | ChatGPT和程序员 : 协作 or 取代

⭐作者介绍&#xff1a;大二本科网络工程专业在读&#xff0c;持续学习Java&#xff0c;努力输出优质文章 ⭐作者主页&#xff1a;逐梦苍穹 ⭐如果觉得文章写的不错&#xff0c;欢迎点个关注一键三连&#x1f609;有写的不好的地方也欢迎指正&#xff0c;一同进步&#x1f601;…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...