当前位置: 首页 > news >正文

Linux防火墙学习笔记3

iptables链的概念:

当客户端访问服务器端的Web服务的时候,客户端发送请求报文到网卡,而TCP/IP协议栈是属于内核的一部分。客户端的请求报文会通过内核的TCP协议传输到用户空间的Web服务,而客户端报文的目的地址为Web服务器所监听的套接字ip:port上,当Web服务器响应客户端请求的时候,Web服务所回应的响应报文的目的地址为客户端地址。

netfilter是真正的防火墙,属于内核的一部分,所以,我们要想让netfilter起到作用,我们就需要在内核中设置关口,所有进出的数据报文都要通过这些关口,经过检查,符合放行条件的则允许放行,符合阻拦条件的则被阻止,于是就出现了input和output关口,然后在iptables,我们把关口叫做链。

input:有一串规则。

output:有一串规则。

如果客户端发到本机的报文中包含的服务器地址并不是本机,而是其他服务器,此时本机就应该能够转发,那么这个转发就是本机内核所支持的ip_forward功能,此时我们的主机类似于路由器功能。所以我们会看到iptables中,所谓的关口并不是只是上面提到的input和output这两个关口,应该还有路由前、转发和路由后,他们对应的英文分别是prerouting/forward/postrouting,这就是我们所说的5链。

prerouting: 路由前

forward: 转发

postrouting: 路由后

那么这台服务器就起到了路由转发的功能。

ip_forward的开启方法:

find / -name "ip_forward"
/proc/sys/net/ipv4/ip_forward

当这个文件里的值是1表示开启,为0表示关闭。

临时的:
echo 0 > ip_forward永久更改:
vim /etc/sysctl.conf
输入:
net.ipv4.ip_forward=1sysctl -p

再总结:

链:很多规则放在一起,就是链。链上有很多规则。

1)input:从内核空间到用户空间;

2)output:从用户空间到内核空间;

3)prerouting:  路由前;

4)forward:转发;

5)postrouting:路由后;

 

常用场景中,报文的流向:

1)到本机某服务进程的报文:prerouting->input

2)由本机转发的报文:prerouting->forward->postrouting

3)由本地的某个服务进程发出的报文,通常为响应报文:output->postrouting

规则链:

防火墙的作用在于对经过的数据报文进行匹配规则,然后执行对应的动作,所以数据包经过这些关口的时候,必须匹配这个关口的规则,当时关口规则可能不止一条,可能会有很多,当我们把众多的规则配置在一个关口上时,所有的数据包经过都必须进行匹配,那就形成了一个要匹配的规则链条,因此我们把链叫做规则链。

总结:

input:处理入站数据包;

output:处理出站数据包

forward:处理转发数据包,主要是将数据包转发至本机其他网卡;

当数据报文经过本机的时候,网卡接收数据报文至缓冲区,内核读取报文ip首部,发现报文不是送到本机时,目的IP地址不是本机,由内核直接送到forward链做匹配,匹配之后若符合forward的规则,再经由postrouting送往下一跳或目的主机。

prerouting:在进行路由选择前处理数据包,修改到达防火墙数据包目的IP地址,用于判断目标主机(改目的IP地址 DNAT)

postrouting:在进行路由选择后处理数据包,修改要离开防火墙数据包的的源IP地址,判断经由哪一个接口送往下一跳。(改源IP地址 SNAT)

相关文章:

Linux防火墙学习笔记3

iptables链的概念: 当客户端访问服务器端的Web服务的时候,客户端发送请求报文到网卡,而TCP/IP协议栈是属于内核的一部分。客户端的请求报文会通过内核的TCP协议传输到用户空间的Web服务,而客户端报文的目的地址为Web服务器所监听的…...

数仓用户行为数据分析

分层优点:复杂的东西可以简单化、解耦(屏蔽层作用)、提高复用、方便管理 SA 贴源 数据组织结构与源系统保持一致 shm 历史层 针对不同特征的数据做不同算法,目的都是为了得到一份完整的数据 PDM 明细层 做最细粒度的数据明细…...

RK3288 Android5.1添加WiFiBT模块AP6212

CPU:RK3288 系统:Android 5.1 注:RK3288系统,目前 Android 5.0 Kernel 3.10 SDK 支持 Braodcom,Realtek 等 WiFi BT 模块 各个 WiFi BT 模块已经做到动态兼容,Android 上层不再需要像以前一样进 行特定宏的配置 此…...

使用 YApi 管理 API 文档,测试, mock

随着互联网的发展,API变的至关重要。根据统计,目前市面上有上千万的开发者,互联网项目超过10亿,保守统计涉及的 API 数量大约有 100 亿。这么大基数的API,只要解决某些共有的痛点,将会是非常有意义的事情。…...

chatgpt生成【2023高考作文】北京卷二 - 亮相

舞台上,戏曲演员有登场亮相的瞬间。生活中也有许多亮相时刻:国旗下的讲话,研学成果的汇报,新产品的发布……每一次亮相,都受到众人关注;每一次亮相,也会有一段故事。 请以“亮相”为题目&#x…...

实验四、shell编程

一、实验目的 1.了解shell的特点和主要种类。 2.掌握 shel1 脚本的建立和执行方式。 3.掌握bash的基本语法。 4.学会编写shell 脚本。 二、实验内容 shell 脚本的建立和执行。历史命令和别名定义。shell变量和位置参数、环境变量。bash的特殊字符。一般控制结构。算术运算及…...

【代码随想录】刷题Day51

1.最佳买卖股票时机含冷冻期 309. 最佳买卖股票时机含冷冻期 1.dp数组的含义:dp[i][0]为第i天卖出股票的最大价值;dp[i][1]为第i天持有股票的最大价值 2.dp数组的条件:由于有冷冻期,所以dp数组的条件就变了。第i天卖出股票的最大…...

centos7下svnserve方式部署subversion/SVN服务端(实操)

一般来说,subversion服务器可以用两种方式架设: 一种是基于svnserve,svnserve作为服务端; 一种是基于Apache,用apache作为服务端。 这里采用第一种方式部署。 执行如下命令,安装SVN。 yum install sub…...

一款红队批量脆弱点搜集工具

功能 指纹识别:调用“三米前有香蕉皮“前辈工具,他的工具比finger好用 寻找资产中404,403,以及网页中存在的其他薄弱点,以及需要特定路径访问的资产 后续会把nuclei加进来 目前只有windows可以用 使用 第一次使用脚本请运行p…...

Docker 基本管理

一、Docker 概述 Docker是一个开源的应用容器引擎,基于go语言开发并遵守了apache2.0协议开源。 Docker是在Linux容器里运行应用的开源工具,是一种轻量级的“虚拟机”。 Docker的容器技术可以在一台主机上轻松为任何应用创建一个轻量级的、可移植的、自…...

Debezium系列之:把多张表的数据分发到同一个Kafka Topic,同一张表的数据始终进入Topic相同分区

Debezium系列之:把多张表的数据分发到同一个Kafka Topic,同一张表的数据始终进入Topic相同分区 一、需求背景二、实现思路三、核心参数和参数详解四、创建相关表五、提交Debezium Connector六、插入数据七、消费Kafka Topic八、总结和延展一、需求背景 debezium采集数据库的多…...

雪崩 - 如何重试 - sla和重试风暴的双保证

父文章 异常导致级联雪崩的例子 - 不应该有立即重试._个人渣记录仅为自己搜索用的博客-CSDN博客 一个系统处于稳态临界点 如果立即重试3次, 会导致流量瞬间增大, 哪怕后来系统10s内自愈了, 这个时候, 流量本质上增加了3倍. 如果rpc框架不是fastFail ( 超过 调用方失败timeout上…...

[网鼎杯 2018]Fakebook1

拿到题目后是一个博客的界面,这里可以登录和注册 点入登录界面,猜测可能是sql注入 试了很多次,都不是,也没有回显报错,所以把目光放到了注册上面 注册的其他行数据,差不多都可以乱填,只有一个bl…...

Oracle-第一章-多表查询和其他

4多表关联查询 4.1表的别名 ①在多表关联查询时,如果多个表之间存在同名的列,则必须用表名限定列的引用如dept.deptno,emp.deptno ②为使语句简洁,使用表别名,表别名在from子句中定义如 emp e ③表别名一经定义,在整…...

Office Visio 2016安装

哈喽,大家好。今天一起学习的是Visio 2016的安装,这是一个绘制流程图的软件,用有效的绘图表达信息,比任何文字都更加形象和直观。Office Visio 是office软件系列中负责绘制流程图和示意图的软件,便于IT和商务人员就复杂…...

GPT从入门到精通之 GPT 模型入门及原理介绍

GPT 模型入门及原理介绍 如果你关心人工智能,并关注最新的自然语言处理技术,那么你可能听说过 GPT 模型。GPT(Generative Pre-trained Transformer)是 OpenAI [1] 研究团队开发的一种基于 Transformer 架构的模型,能够…...

USB数据线上的“疙瘩”

在不少键盘、鼠标或是游戏外设的数据线末端我们都能见到一小段金属圆环。虽然这算得上是习以为常的一个设计,但如果说到其具体作用的话很多人一下子还真回答不上来。反正笔者在这里先可以告诉大家,这货肯定不是简简单单的配重块或是装饰品,要…...

公司新来了个00后测开,上来一顿操作给我秀麻了.....

开年公司新来了个同事,听说大学是学的广告专业,因为喜欢IT行业就找了个培训班,后来在一家小公司实习半年,现在跳槽来我们公司。来了之后把现有项目的性能优化了一遍,服务器缩减一半,性能反而提升4倍!给公司…...

深度学习架构-Tensorflow

深度学习基本概念 人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能的目的 就是让计算机能够像人一样思考。 强人工智能:就是要使机器学习人的理解、学习和执行任务的能力。 弱人工智能:指用…...

SpringBoot 使用validator进行参数校验(实例操作+注意事项+自定义参数校验)

一、实例操作 ①、引入依赖 <dependency><groupId>org.hibernate</groupId><artifactId>hibernate-validator</artifactId><version>6.0.4.Final</version></dependency> ②、创建实体类 package com.springboot.entity;im…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...