当前位置: 首页 > news >正文

Play wright自动化测试工具该如何更加完美地使用

目录

1.1 拦截网络请求

1.2 pytest 管理用例

1.3 PO模型

1.4 API 和 UI 自动化测试融合

1.5 数据驱动

1.6 动态挑选用例执行

1.6 Allure测试报告

1.7 持续集成


1.1 拦截网络请求

网络拦截:

  • 无响应 pass

  • 中止 route.abort("aborted")

  • 放行 route.continue_()

  • 处理, 返回自定义的响应 route.fulfill()

Playwright使用 router 方法,并且传递以下参数:

  • url 要拦截地址表达式:

n glob表达式

n 正则表达式

n 返回布尔值的函数

  • handler ,拦截后进行执行的函数

n 接受 router 参数

中止响应,代码示例:

自定义响应,代码示例:

本来访问百度,自定义返回中访问到了金山文档首页。

1.2 pytest 管理用例

市面上的流行框架:unittest(标准库)、pytest(第三方库)

安装插件:

代码示例:

执行命令:# 获得网页报告

pytest --html=report.html

报告见下:

1.3 PO模型

playwright本身是支持PO模型的。

如打卡设置页,编写定位方法的py文件

测试用例时直接操作定位元素,组成业务逻辑即可

1.4 API 和 UI 自动化测试融合

好处:缩短自动化测试代码的整体运行时长。举个例子,我们要测试表单结果这个功能,只有查看表单结果这个操作本身才是我们的测试范围, 在查看表单结果之前的所有操作,例如用户注册—用户登录—用户创建表单—发布表单-填写表单 ,这一系列操作都属于“非测试部分”。

关键点:当从 API 请求切换到 UI 操作时,登录态应该从接口请求中带过来。(既保持同一会话cookie或 token)

1.5 数据驱动

数据驱动,指在自动化测试中处理测试数据的方式。方法是采用操作yaml文件进行测试数据与功能函数分离,代码示例见下:

备注:

  1. 还有excel、json等格式文件的方式,这里不概述。

  2. 需要提前安装库 pip install PyYaml

1.6 动态挑选用例执行

pytest框架支持多种方式的测试用例的挑选,这里我只介绍一种方式:

  • pytest.ini 文件中设置规则:markers = debug01

  • 需调试的测试用例打上标签: @pytest.mark.debug01

  • 执行命令 (--headful 带头执行,默认是无头模式)

pytest -m debug01 --headful

1.6 Allure测试报告

安装pip install allure-pytest

报告截图:

1.7 持续集成

持续集成这里采用的是jenkins,不过第一次运行会报错:jenkins目录没有浏览器驱动:

这个时候需要将C:\Users\win\AppData\Local\ms-playwright下的浏览器驱动复制到

jenkins的要求目录下,如:

C:\Windows\System32\config\systemprofile\AppData\Local\ms-playwright

备注:jenkins的job命令:

G:cd G:\InterAutoTest_Wworkon playwrightPRO && python run.py

2. 案例实战

测试用例要求:打卡功能,固定卡预览后,卡片类型是固定卡

测试脚本:

 作为一位过来人也是希望大家少走一些弯路,希望能对你带来帮助。(WEB自动化测试、app自动化测试、接口自动化测试、持续集成、自动化测试开发、大厂面试真题、简历模板等等),相信能使你更好的进步!

留【自动化测试】即可

相关文章:

Play wright自动化测试工具该如何更加完美地使用

目录 1.1 拦截网络请求 1.2 pytest 管理用例 1.3 PO模型 1.4 API 和 UI 自动化测试融合 1.5 数据驱动 1.6 动态挑选用例执行 1.6 Allure测试报告 1.7 持续集成 1.1 拦截网络请求 网络拦截: 无响应 pass 中止 route.abort("aborted") 放行 route…...

数据可视化学习笔记:Python实现汽车品牌销售量矩形树图

引言 本文将介绍如何使用 Python 和 Pyecharts 库创建一个汽车品牌销售量的矩形树图。我们将使用 Pandas 读取 CSV 文件数据,然后对数据进行处理、封装,最后将数据可视化为矩形树图。 准备工作 首先,我们需要先安装好相关库: PandasPyecharts可以使用 pip 命令进行安装:…...

【深蓝学院】手写VIO第3章--基于优化的 IMU 与视觉信息融合--作业

0. 题目 1. T1 T1.1 绘制阻尼因子曲线 将尝试次数和lambda保存为csv,绘制成曲线如下图 iter, lambda 1, 0.002000 2, 0.008000 3, 0.064000 4, 1.024000 5, 32.768000 6, 2097.152000 7, 699.050667 8, 1398.101333 9, 5592.405333 10, 1864.135111 11, 1242.7567…...

企业级信息系统开发讲课笔记4.11 Spring Boot中Spring MVC的整合支持

文章目录 零、学习目标一、Spring MVC 自动配置(一)自动配置概述(二)Spring Boot整合Spring MVC 的自动化配置功能特性 二、Spring MVC 功能拓展实现(一)创建Spring Boot项目 - SpringMvcDemo2021&#xff…...

chatgpt赋能python:Python安装EGG——一个简单的指南

Python安装EGG——一个简单的指南 如果你使用Python有一段时间了,你可能会遇到需要安装扩展包(Package)的情况。在Python中,这些扩展包的文件格式通常是.egg(Easy Installable GZip)。在本文中&#xff0c…...

Web前端-React学习

React基础 React 概述 React 是一个用于构建用户界面的JavaScript库。 用户界面: HTML页面(前端) React主要用来写HTML页面, 或构建Web应用 如果从MVC的角度来看,React仅仅是视图层(V),也就…...

【Rust项目实战】sensleak,扫描 Git 仓库中的敏感信息

github仓库:https://github.com/open-rust-initiative/sensleak-rs Rust是一门神奇的编程语言,它提供了内存安全、零成本抽象、并发安全等特性,使开发人员能够编写高性能、高抽象和安全的代码。 这是我用rust开发的第一个工作,希望…...

搭建一个定制版New Bing吧

项目介绍 项目地址:https://github.com/adams549659584/go-proxy-bingai 引用项目简介:用 Vue3 和 Go 搭建的微软 New Bing 演示站点,拥有一致的 UI 体验,支持 ChatGPT 提示词,国内可用,国内可用&#xff…...

使用AIGC工具提升论文阅读效率

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…...

本周大新闻|Vision Pro头显重磅发布;苹果收购AR厂商Mira

本周XR大新闻,上周Quest 3发布之后,本周苹果MR头显Vision Pro正式发布,也是本周AR/VR新闻的重头戏。 ​AR方面,苹果发布VST头显Vision Pro(虽然本质是台VR,但以AR场景为核心)以及visionOS&…...

在Spring Boot微服务使用JedisCluster操作Redis集群String字符串

记录&#xff1a;449 场景&#xff1a;在Spring Boot微服务使用JedisCluster操作Redis集群的String字符串数据类型。 版本&#xff1a;JDK 1.8,Spring Boot 2.6.3,redis-6.2.5,jedis-3.7.1。 1.微服务中配置Redis信息 1.1在pom.xml添加依赖 pom.xml文件&#xff1a; <…...

5.1 合并数据

5.1 合并数据 5.1.1 堆叠合并数据1、横向堆叠 concat()2、纵向堆叠 concat()和append() 5.1.2 主键合并数据 merge()和join()5.1.3 重叠合并数据 combine_first() 5.1.1 堆叠合并数据 堆叠就是简单地把两个表拼在一起&#xff0c;也被称作轴向连接、绑定或连接。依照连接轴的方…...

华为OD机试真题 JavaScript 实现【求解立方根】【牛客练习题】

一、题目描述 计算一个浮点数的立方根&#xff0c;不使用库函数。保留一位小数。 数据范围&#xff1a;∣val∣≤20 。 二、输入描述 待求解参数&#xff0c;为double类型&#xff08;一个实数&#xff09; 三、输出描述 输出参数的立方根。保留一位小数。 四、解题思路…...

初探BERTPre-trainSelf-supervise

初探Bert 因为一次偶然的原因&#xff0c;自己有再次对Bert有了一个更深层地了解&#xff0c;特别是对预训练这个概念&#xff0c;首先说明&#xff0c;自己是看了李宏毅老师的讲解&#xff0c;这里只是尝试进行简单的总结复述并加一些自己的看法。 说Bert之前不得不说现在的…...

Ficus 第二弹,突破限制器的 Markdown 编辑管理软件!

大家好&#xff0c;我们是 ggG 团队&#xff0c;我们开发的 markdown 笔记管理软件 Ficus Beta 版本正式发布了。详情可以见我们官网&#xff0c;也可以来我们仓库查看。 相对于 Alpha 版本&#xff08;可以在我们之前的博客中查看&#xff09;&#xff0c;主要有 3 点明显的提…...

基于Springboot+vue+协同过滤+前后端分离+鲜花商城推荐系统(用户,多商户,管理员)+全套视频教程

基于Springbootvue协同过滤前后端分离鲜花商城推荐系统(用户,多商户,管理员)(毕业论文11000字以上,共33页,程序代码,MySQL数据库) 代码下载: 链接&#xff1a;https://pan.baidu.com/s/1mf2rsB_g1DutFEXH0bPCdA 提取码&#xff1a;8888 【运行环境】Idea JDK1.8 Maven MySQL…...

MixQuery系列(一):多数据源混合查询引擎调研

背景 存储情况 当前的存储引擎可谓百花齐放,层出不穷。为什么会这样了?因为不存在One for all的存储,不同的存储总有不同的存储的优劣和适用场景。因此,在实际的业务场景中,不同特点的数据会存储到不同的存储引擎里。 业务挑战 然而异构的存储和数据源,却给分析查询带…...

d2l学习——第一章Introduction

x.0 环境配置 使用d2l库&#xff0c;安装如下&#xff1a; conda create --name d2l python3.9 -y conda activate d2lpip install torch1.12.0 torchvision0.13.0 pip install d2l1.0.0b0mkdir d2l-en && cd d2l-en curl https://d2l.ai/d2l-en.zip -o d2l-en.zip u…...

【python】【Word】用正则表达式匹配正文中的标题(未使用样式)并通过win32com指定相应样式

标题的格式 二级标题&#xff1a; 数字.数字. 文字 三级标题&#xff1a;数字.数字.数字 文字 python代码 使用方法 只保留一个需要应用的WORD文档运行程序&#xff0c;逐行匹配 使用效果 代码 import win32com.client import redef compile_change_Word_titlestyle():#…...

Matlab实现光伏仿真(附上完整仿真源码)

光伏发电电池模型是描述光伏电池在不同条件下产生电能的数学模型。该模型可以用于预测光伏电池的输出功率&#xff0c;并为优化光伏电池系统设计和控制提供基础。本文将介绍如何使用Matlab实现光伏发电电池模型。 文章目录 1、光伏发电电池模型2、使用Matlab实现光伏发电电池模…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...