当前位置: 首页 > news >正文

Shapley值法介绍及实例计算

 

Shapley值法介绍及实例计算

为解决多个局中人在合作过程中因利益分配而产生矛盾的问题,属于合作博弈领域。应用 Shapley 值的一大优势是按照成员对联盟的边际贡献率将利益进行分配,即成员 i 所分得的利益等于该成员为他所参与联盟创造的边际利益的平均值。
      本文从Shapley值法的概念定义以及实例计算两个方面展开叙述。

一、 Shapley值法解析


(一)符号定义
(1)n、N:假设合作博弈系统内有n个成员,由N={1, 2, …, n}表示;
(2)S:不同成员组成不同的联盟,记为S,S是N的子集;
(3)v(S):定义在N上的一实函数v为特征函数,即联盟S的收益记为v(S)。特征函数v(S)具有超可加性,若联盟A和B没有交集,则A与B构成新联盟的利益大于等于联盟A与B的收益之和,即当A,B符合A∩B=ϕ条件时:v(A∪B)≥v(A)+v(B);
(4)φ_i(v):表示联盟中成员 i 获得的利益。

(二)Shapley值法的公理
      Shapley 值分配策略是满足以下四个公理的唯一解。
(1)对称性
      设π是N={1, 2, …, n}的一个排列,对于N的任意子集S={i_1, i_2,… ,i_m},有πS={πi_1, πi_2,… , πi_m}。若在定义特征函数w(S)=v(πS),则对于每个成员 i 属于N都有φ_i(w)= φ_πi(v)
      这表明了利益相关者的先后顺序或者记号标记并不会对利益分配结果造成影响。
(2)有效性

∑iϵN (φ_i(v))=v(N)
      这表明利益相关者联盟的总价值就是各 Shapley 值之和,即特征函数值。
(3)冗员性
      若对于包含成员i的所有子集S都有v(S{i})=v(S),则φ_i(v)=0。其中S{i}为集合S去掉元素 i 后的集合。
      这说明如果一个成员对于任何他参与的合作联盟都没有贡献,则他不应当从全体合作中获利。
(4)加法性
      若在N上有两个特征函数v, w,则有

φ(v+w)=φ(v)+φ(w)
      这表明有多种合作时,每种合作的利益分配方式与其他合作结果无关,总分配是两项的和。
(三)Shapley值法
      成员i在参与S联盟时有(|S|-1)!种排序,|S|表示联盟S所包含的成员数,而剩余(n-|S|)个成员的排序有(n-|S|)!种,所有成员i参与的不同的排序组合除以n个成员的随机排序组合就是成员i对于联盟整体所应分得利益得权重,记为 [(|S|-1) !(n-|S|)!]/(n!) 。成员i参与不同联盟S为自身参与联盟创造得 边际贡献 记为 [v(S)-v(S\ {i})] ,那么成员i从总体利益v(N)所分得的利益为

注:S\ {i}表示从集合S中删除元素 i 后的集合。

二、 实例计算


      题目:共有三家公司,公司1,2,3单独投资可盈利v(1)=100,v(2)=200,v(3)=300,如果公司1和公司2联合,可获利v(1&2)=500;公司2和公司3联合,可获利v(2&3)=600;公司1和公司3联合,可获利v(1&3)=700;公司1、公司2和公司3联合,可获利v(1&2&3)=1000;那么三个公司一起合作,每个公司应各获利多少?

解析一
      共有3个成员,n=3
(1)成员1 获利:
      成员1 可以组成的联盟有4种情况:{1}、{1、2}、{1、3}、{1、2、3}。

      由上表可知,成员1(公司1)的获利为850/3。Shapley值法的核心思想在于按照成员对联盟的边际贡献率将利益进行分配。

(2)成员2 获利:

      成员2(公司2)的获利为850/3。

(3)成员3 获利:

      因此成员3(公司3)的获利为1300/3。

(4)三者获利和总为(850/3+850/3+1300/3)=1000,符合题目。

解析二
      另一种思路,3个成员,随机全排序有6种情况,即6种联盟组建的顺序,6种情况等概率=1/6。

结果与上一思路一样,成员2、成员3的获利同理可计算。
 

相关文章:

Shapley值法介绍及实例计算

Shapley值法介绍及实例计算 为解决多个局中人在合作过程中因利益分配而产生矛盾的问题,属于合作博弈领域。应用 Shapley 值的一大优势是按照成员对联盟的边际贡献率将利益进行分配,即成员 i 所分得的利益等于该成员为他所参与联盟创造的边际利益的平均值…...

不用手动改 package.json 的版本号

“为什么package.json 里的版本还是原来的,有没有更新?”,这个时候我意识到,我们完全没有必要在每次发布的时候还特意去关注这个仓库的版本号,只要在发布打tag的时候同步一下即可 node.js 部分,我们得有一个…...

gitlab Can‘t update,dev has no tracked branch

代码仓库迁移到gitlab后本地更改仓库地址后 拉取代码报错: Can’t update,dev has no tracked branch: 解决办法: 在当前项目的目录下运行命令: git branch -u git dev --set-upstream-toorigin/dev第一个dev是本地分支名字&…...

sql批量操作

SQl: 1,在某一字段后批量增加内容:UPDATE 表名 SET 字段 CONCAT(字段,要增加的内容) 例:UPDATE b8_niuniu_permission SET game_ids CONCAT(game_ids,,3) (或者后面可以加where条件) 2,批量修改某一字段…...

数据库监控与调优【九】—— 索引数据结构

索引数据结构-B-Tree索引、Hash索引、空间索引、全文索引 二叉树查找 对于相同深度的节点,左侧的节点总是比右侧的节点小。在搜索时,如果要搜索的值key大于根节点(图中6),就会在右侧子树里查找;key小于根…...

哈工大计算机网络传输层详解之:流水线机制与滑动窗口协议

哈工大计算机网络传输层详解之:流水线机制与滑动窗口协议 哈工大计算机网络课程传输层协议详解之:可靠数据传输的基本原理哈工大计算机网络课程传输层协议详解之:TCP协议哈工大计算机网络课程传输层协议详解之:拥塞控制原理剖析 …...

Unity Mac最新打苹果包流程

作者介绍:铸梦xy。IT公司技术合伙人,IT高级讲师,资深Unity架构师,铸梦之路系列课程创始人。 IOS详细打包流程1.申请APPID2.申请开发证书3.创建描述文件 IOS详细打包流程 1.申请AppID 2.创建证书 3.申请配置文件(又名描…...

【MySQL数据库 | 第二十篇】explain执行计划

目录 前言: explain: 语法: 总结: 前言: 上一篇我们介绍了从时间角度分析MySQL语句执行效率的三大工具:SQL执行频率,慢日志查询,profile。但是这三个方法也只是在时间角度粗略的…...

学Python能做哪些副业?我一般不告诉别人!建议存好

前两天一个朋友找到我吐槽,说工资一发交完房租水电,啥也不剩,搞不懂朋友圈里那些天天吃喝玩乐的同龄人钱都是哪来的?确实如此,刚毕业的大学生工资起薪都很低,在高消费、高租金的城市,别说存钱&a…...

简化 Hello World:Java 新写法要来了

OpenJDK 的 JEP 445 提案正在努力简化 Java 的入门难度。 这个提案主要是引入 “灵活的 Main 方法和匿名 Main 类” ,希望 Java 的学习过程能更平滑,让学生和初学者能更好地接受 Java 。 提案的作者 Ron Pressler 解释:现在的 Java 语言非常…...

【服务器】springboot实现HTTP服务监听

文章目录 前言1. 本地环境搭建1.1 环境参数1.2 搭建springboot服务项目 2. 内网穿透2.1 安装配置cpolar内网穿透2.1.1 windows系统2.1.2 linux系统 2.2 创建隧道映射本地端口2.3 测试公网地址 3. 固定公网地址3.1 保留一个二级子域名3.2 配置二级子域名3.2 测试使用固定公网地址…...

浅谈常见的加密算法及实现

浅谈常见的加密算法及实现 简介: 随着公司业务的发展,系统用户量日益增多,系统安全性问题一直在脑子里反复回旋,以前系统用户少影响面小,安全方面也一直没有进行思考和加固,现如今业务发展了,虽…...

FTP协议详解

简介 FTP(File Transfer Protocol,文件传输协议) 是 TCP/IP 协议组中的协议之一。FTP协议包括两个组成部分,其一为FTP服务器,其二为FTP客户端。其中FTP服务器用来存储文件,用户可以使用FTP客户端通过FTP协…...

网络安全|渗透测试入门学习,从零基础入门到精通—渗透中的开发语言

目录 前面的话 开发语言 1、html 解析 2、JavaScript 用法 3、JAVA 特性 4、PHP 作用 PHP 能做什么? 5、C/C 使用 如何学习 前面的话 关于在渗透中需要学习的语言第一点个人认为就是可以打一下HTML,JS那些基础知识,磨刀不误砍柴…...

八大排序算法之归并排序(递归实现+非递归实现)

目录 一.归并排序的基本思想 归并排序算法思想(排升序为例) 二.两个有序子序列(同一个数组中)的归并(排升序) 两个有序序列归并操作代码: 三.归并排序的递归实现 递归归并排序的实现:(后序遍历递归) 递归函数抽象分析: 四.非递归归并排序的实现 1.非递归归并排序算法…...

基于SpringBoot+Html的前后端分离的学习平台

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 在知识大爆炸的现代,怎…...

MySQL实战解析底层---“order by“是怎么工作的

目录 前言 全字段排序 rowid排序 全字段排序 VS rowid排序 前言 在开发应用的时候,一定会经常碰到需要根据指定的字段排序来显示结果的需求以举例市民表为例,假设你要查询城市是“杭州”的所有人名字,并且按照姓名排序返回前1000个人的姓…...

Linux和Shell:开源力量与命令行之美

目录 一、概述二、Linux的简单介绍三、Shell的简单介绍四、Linux和Shell的应用领域五、Shell编程结语: 一、概述 Linux和Shell是开源世界中不可或缺的两个重要组成部分。Linux作为一种自由和开放的操作系统,以其稳定性、安全性和可定制性而备受推崇。而S…...

服务负载均衡Ribbon

服务负载均衡Ribbon Ribbon 介绍Ribbon 案例Ribbon 负载均衡策略Ribbon 负载均衡算法设置自定义负载均衡算法 Ribbon 介绍 Ribbon 是一个的客服端负载均衡工具,它是基于 Netflix Ribbon 实现的。它不像 Spring Cloud 服务注册中心、配置中心、API 网关那样独立部署…...

hibernate vilidator主要使用注解的方式对bean进行校验

hibernate vilidator主要使用注解的方式对bean进行校验,初步的例子如下所示: package com.learn.validate.domain; import javax.validation.constraints.Min; import org.hibernate.validator.constraints.NotBlank; public class Student { //在需要校…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

【位运算】消失的两个数字(hard)

消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...