当前位置: 首页 > news >正文

Elasticsearch原理剖析

一、 Elasticsearch结构

Elasticsearch集群方案由EsMaster、EsClient和EsNode1、EsNode2、EsNode3、EsNode4、EsNode5、EsNode6、EsNode7、EsNode8、EsNode9进程组成,如下图所示,模块说明如表下所示。

在这里插入图片描述
说明如表:

名称说明
ClientClient使用HTTP或HTTPS协议同Elasticsearch集群中的EsClient以及各EsNode实例进程进行通信,进行分布式索引和分布式搜索操作。
EsMasterEsMaster为Elasticsearch的主节点,负责集群的管理,主要是集群相关的操作,如决定分片的分配、跟踪集群节点等。
EsNode1-9EsNode1-9为Elasticsearch的数据节点,主要是存储索引数据,对文档进行增删改查、聚合等操作。
EsClientEsClient为Elasticsearch的协调节点,只处理路由请求、搜索,及分发索引等操作。自身不存储数据,也不管理集群。
ZooKeeper集群ZooKeeper为Elasticsearch集群中各进程提供心跳感应机制

二、Elasticsearch基本概念

  • Index: 即索引,是Elasticsearch中一个逻辑命名空间,指向一个或多个分片,内部Apache Lucene实现索引中数据的读写。索引与关系数据库实例Table相当。一个Elasticsearch实例可以包含多个索引。

  • Document: 文档,是可以被索引的基本单位,特指最顶层结构或根对象序列化成的JSON数据。相当于数据库中的Row。一个索引包含多个文档。

  • Mapping:映射,用来约束字段的类型,可以根据数据自动创建。相当于数据库中的Schema。

  • Field: 字段,组成文档的最小单位。相当于数据库中的Column。每个文档包含多个字段。

  • EsMaster: 主节点,可以临时管理集群级别的一些变更,例如新建或删除索引、增加或移除节点等。主节点不参与文档级别的变更或搜索,也不接收请求。在流量增长时,该主节点不会成为集群的瓶颈。

  • EsNode: Elasticsearch节点,一个节点就是一个Elasticsearch实例。

  • EsClient: Elasticsearch节点,该节点只能路由请求,处理搜索减少阶段和分发批量索引。其自身不进行数据存储,也没有管理集群的能力。

  • Shard: 分片,Elasticsearch中最小级别的工作单元,文档存储在分片中,并且在分片中被索引。

  • Primary Shard: 主分片,索引中的每个文档属于一个单独的主分片,主分片的数量决定了索引最多能存储多少数据。

  • Replica Shard: 复制分片,它是主分片的一个副本,可以防止硬件故障导致的数据丢失,同时可以提供读请求,比如搜索或者从别的shard取回文档。

  • Recovery: 代表数据恢复或叫数据重新分布,Elasticsearch在有节点加入或退出时会根据机器的负载对索引分片进行重新分配,故障的节点重新启动时也会进行数据恢复。

  • Gateway: 代表Elasticsearch索引快照的存储方式,默认是先把索引存放到内存中,当内存满了时再持久化到本地硬盘。Gateway对索引快照进行存储,当这个Elasticsearch集群关闭再重新启动时就会从Gateway中读取索引备份数据。支持多种类型的Gateway,有本地文件系统(默认),分布式文件系统,Hadoop的HDFS。

  • Transport: 代表Elasticsearch内部节点或集群与客户端的交互方式,默认内部是使用TCP协议进行交互,同时它支持HTTP协议(json格式)、thrift、servlet、memcached、zeroMQ等的传输协议(通过插件方式集成)。

  • ZooKeeper集群: 在Elasticsearch是必须的,为其提供安全认证信息的存储等功能。

三、Elasticsearch原理

1.Elasticsearch内部架构

Elasticsearch通过RESTful API或者其他语言(比如Java)API提供丰富访问接口,使用集群发现机制,支持脚本语言,支持丰富的插件。底层基于Lucene,保持Lucene绝对的独立性,通过本地文件、共享文件、HDFS完成索引存储,如下图所示。
在这里插入图片描述

2.倒排序索引

传统的搜索方式(正排序索引,如图3所示)按照文档编号进行搜索,搜索时要扫描每个文档关键字的信息,直到找出所有满足条件的关键字的信息。正排序索引的优点是易于维护,缺点搜索耗时太长。如下图所示:
在这里插入图片描述
而Elasticsearch(Lucene)的搜索则是采用了倒排序索引(如下图所示)的方式。由不同的关键字组成的表,称为“词典”,其中包含了各种关键字和关键字的统计信息(包含所在文档编号,文档中位置和出现频率等)。通过倒排序索引进行搜索,就是通过关键字查询相对应的文档编号和文档中所在位置,再找到完整文档,类似于查字典,或通过查书目录查指定页码书的内容。倒排在构建索引时较为耗时且维护成本较高,但是搜索耗时短。
在这里插入图片描述

2.Elasticsearch分布式索引流程

Elasticsearch分布式索引操作流程如下图所示。
在这里插入图片描述
操作流程说明如下:

阶段1: 客户端发送一个索引请求给任意节点,假设是Node 1。

阶段2: Node 1通过请求判断出该文档应该被存储的分片,假设是shard 0这个分片中,因此Node 1会把请求转发到shard 0的primary shard P0存在的Node 3节点上。

阶段3: Node 3在shard 0的primary shard P0上执行请求。如果请求执行成功,Node 3并行地将该请求发给shard 0的所有存在于Node 1和Node 2中的replica shard R0上。如果所有的replica shard都成功地执行了请求,那么将会向Node 3回复一个成功确认,当Node 3收到了所有replica shard的确认信息后,则向用户返回一个Success消息。

3.Elasticsearch分布式搜索流程

Elasticsearch分布式搜索操作流程分为两个阶段,即查询阶段与获取阶段。分布式搜索操作流程之查询阶段如下图所示:

3.1分布式搜索操作流程之查询阶段

在这里插入图片描述操作流程说明如下:

阶段1: 客户端发送一个检索请求给任意节点,假设是Node 3。

阶段2: Node 3将检索请求发送给该index中的每一个shard,此时会采取轮询策略,在primary shard及其所有replica shard中随机选择一个,让读请求负载均衡。每个shard在本地执行检索,并将结果排序添加到本地。

阶段3: 每个shard返回本地所记录的结果,发送给Node 3。Node 3将这些值合并,做全局排序。

查询阶段主要定位了所要检索数据的具体位置,而获取阶段的任务就是将这些定位好的数据内容取回并返回给客户端。获取阶段如下图所示:

3.2分布式搜索操作流程之获取阶段

在这里插入图片描述操作流程说明如下:

阶段1: Node 3获取了所有待检索数据的定位之后,发送请求给与数据相关的shard。

阶段2: 每个收到Node 3请求的shard,将读取相关文档中的内容,并将它们返回给Node 3。

阶段3: 当Node 3获取到了所有shard返回的文档后,Node 3将它们合并成一条汇总结果,返回给客户端。

4.Elasticsearch分布式批量索引流程

在这里插入图片描述
操作流程说明如下:

阶段1: 客户端向Node 1发送bulk请求。

阶段2: Node 1为每个分片构建批量请求,然后转发到这些请求所需的主分片上。

阶段3: 主分片一个接一个的按序执行操作。当一个操作执行完,主分片转发新文档(或者删除部分)给对应的复制节点,然后执行下一个操作。复制节点操作完成后报告给请求节点,请求节点整

5.Elasticsearch分布式批量搜索流程

在这里插入图片描述操作流程说明如下:

阶段1: 客户端向Node 1发送mget请求。

阶段2: Node 1为每个分片构建一个多条数据检索请求,然后转发到这些请求所需的主分片或复制分片上。当所有回复被接收,Node 1构建响应并返回给客户端。

6.Elasticsearch路由算法

Elasticsearch中提供了两种路由算法:

  • 默认路由:shard=hash(routing)%number_of_primary_shards
  • 自定义路由:该路由方式,通过指定routing的方式,可以影响文档写入到哪个shard,也可以仅仅检索特定的shard。

7.Elasticsearch平衡算法

Elasticsearch中提供了自动平衡功能,适用于扩容、减容、导入数据场景。算法如下:

  • weight_index(node, index) = indexBalance * (node.numShards(index) - avgShardsPerNode(index))
  • Weight_node(node, index) = shardBalance * (node.numShards() -avgShardsPerNode)
  • weight(node, index) = weight_index(node, index) + weight_node(node,index)

8.Elasticsearch单节点多实例部署

在同一个节点上部署多个Elasticsearch实例,根据IP和不同的端口号来区分不同的Elasticsearch实例。可以提高单节点CPU、内存和磁盘的利用率,同时提高Elasticsearch的索引和搜索能力。具体部署如下图所示:
在这里插入图片描述

9.Elasticsearch副本自动跨节点分配策略

单节点多实例部署下,多副本时,如果只做到跨实例分配,存在单点故障,增加默认配置cluster.routing.allocation.same_shard.host:true即可。
在这里插入图片描述

四、Elasticsearch与HBase的关系

Elasticsearch索引HBase数据是将HBase数据写到HDFS的同时,Elasticsearch建立相应的HBase索引数据。其中索引ID与HBase数据的rowkey对应,保证每条索引数据与HBase数据的唯一,实现HBase数据的全文检索。

批量索引: 针对HBase中已有的数据,通过提交MapReduce任务的形式,将HBase中的全部数据读出,然后在Elasticsearch中建立索引,索引过程如下图所示:
在这里插入图片描述

相关文章:

Elasticsearch原理剖析

一、 Elasticsearch结构 Elasticsearch集群方案由EsMaster、EsClient和EsNode1、EsNode2、EsNode3、EsNode4、EsNode5、EsNode6、EsNode7、EsNode8、EsNode9进程组成,如下图所示,模块说明如表下所示。 说明如表: 名称说明ClientClient使用H…...

数据在内存中的存储1(C语言进阶)

数据在内存中的存储 1.数据类型介绍1.1类型的基本归类:整形家族浮点数家族构造类型指针类型空类型 2.整形在内存中的存储2.1 原码、反码、补码2.2 大小端介绍为什么有大端和小端: 我们今天来学习数据在内存中的存储 1.数据类型介绍 前面我们已经学习了基…...

Kubernetes API Server 中启用 pprof 接口

要在 Kubernetes API Server 中启用 pprof 接口,你需要在 API Server 的启动参数或配置文件中进行相应的配置。以下是一些常见的方法: 通过启动参数启用 pprof 接口:在运行 API Server 的命令中,添加 -runtime-configapi/alltrue …...

Docker 私有仓库 harbor 搭建

🎈 作者:Linux猿 🎈 简介:CSDN博客专家🏆,华为云享专家🏆,Linux、C/C、云计算、物联网、面试、刷题、算法尽管咨询我,关注我,有问题私聊! &…...

工厂方法模式

在开发组件的时候比如button、text等,需要对这些组件做比较多的初始化工作,比如初始化长度等。传统的开发方案如下: 图 传统开发方案UML 上面的方案组件创建及组件的其他业务操作耦合在一起,违背了单一职责原则;在客户…...

(CentOS 7)nvidia-smi:Failed to initialize NVML: Driver/library version mismatch

[CentOS 7]nvidia-smi:Failed to initialize NVML: Driver/library version mismatch 问题源头: nvidia-smi \text{nvidia-smi} nvidia-smi报错问题 CUDA \text{CUDA} CUDA安装时的问题 这里仅描述自身发现的一种情况,希望对大家有所帮助。 问题源头&…...

呼吸灯——FPGA

文章目录 前言一、呼吸灯是什么?1、介绍2、占空比调节示意图 二、系统设计1、系统框图2、RTL视图 三、源码四、效果五、总结六、参考资料 前言 环境: 1、Quartus18.0 2、vscode 3、板子型号:EP4CE6F17C8 要求: 将四个LED灯实现循环…...

群辉用户接入vocechat的方法(附开通GPT机器人)

群辉安装聊天服务器-加入chatgpt vocechat项目简单的使用介绍集成群辉帐号系统登陆vocechat 第二章接入chatgpt这是一个机器人的演示 这是个处于发展中的不错的项目吧,才感觉到好神奇。有意思。 vocechat项目简单的使用介绍 昨天的找群辉文章的时候看到了vocechat&…...

flutter js交互传参

加载网页的webView WebView(initialUrl:http://test/h5atui//#/mobileMaps?lng${CommonConfig.lng}&lat${CommonConfig.lat},javascriptMode: JavascriptMode.unrestricted,onWebViewCreated: (controller) {_webViewController controller;},onProgress: (process){set…...

重磅IntelliJ IDEA 2023.2 新版本即将发布,拥抱 AI

IntelliJ IDEA 近期连续发布多个EAP版本,官方在对用户体验不断优化的同时,也新增了一些不错的功能,尤其是人工智能助手补充,AI Assistant,相信在后续IDEA使用中,会对开发者工作效率带来不错的提升。 以下是…...

JavaWeb_SpringCloud微服务_Day1-eureka, ribbon, nacos

JavaWeb_SpringCloud微服务_Day1-eureka, ribbon, nacos 认识微服务微服务技术对比 分布式服务架构案例远程调用 eureka注册中心原理搭建EurekaServer服务注册服务发现 Ribbon负载均衡修改负载均衡饥饿加载 nacos注册中心快速入门eureka和nacos对比 来源 认识微服务 微服务技术…...

数据科学领域常用python库

pandas Pandas 的名称源自 “ panel data ”,这是一个计量经济学术语,用于表示多维结构化数据集和 “ Python 数据分析”。众所周知,清理和转换数据在数据分析中非常重要,Pandas 提供了丰富的数据结构和功能,使数据处…...

【Android关键字】startActivityForResult/onActivityResult/setResult方法的使用

最近在写一个安卓程序,在程序里需要用到startActivityForResult这个Intent操作关键字,与该关键字有关的还有onActivityResult和setResult。这里对其用法进行一个总结。 三者在API中的形式 //startActivityForResult与startActivity类似,只不…...

PyTorch深度学习实战(5)——计算机视觉

PyTorch深度学习实战(5)——计算机视觉 0. 前言1. 图像表示2. 将图像转换为结构化数组2.1 灰度图像表示2.2 彩色图像表示 3 利用神经网络进行图像分析的优势小结系列链接 0. 前言 计算机视觉是指通过计算机系统对图像和视频进行处理和分析,利…...

遥感目标检测(1)--R3Det

目录 一、概述 二、三个挑战 三、网络架构​编辑 1、旋转RetinaNet 2、精细化旋转RetinaNet 3、与RoIAlign(感兴趣区域插值)进行比较 4、消融实验与对比实验 一、概述 R3Det论文中提到一个端到端的精细化的单级旋转检测器,通过从粗到细…...

使用 vue3-tel-input电话组件时,为什么通过v-model绑定的默认值无效而 通过:value绑定有效?

问题: 使用第三方 vue3-tel-input电话组件时,通过v-model绑定具有初始值的电话变量,但input框内显示的初始值为空? 排查过程: 将 v-model绑定改为 :value绑定后,电话变量初始值竟然能够显示在vue3-tel-inp…...

【运维工程师学习二】OS系统管理

【运维工程师学习二】OS系统管理 1、操作系统管理2、进程管理3、进程的启动4、进程信息的查看4.1、STAT 进程的状态:进程状态使用字符表示的(STAT的状态码),其状态码对应的含义:4.2、ps命令常用用法(方便查看系统进程&…...

【前端技巧】CSS常用知识碎片(九)

CSS常用知识碎片(九) mask-image属性 带有半透明的PNG图像的遮罩效果 .mask-image {mask: no-repeat center / contain;mask-image: url(bird.png); }SVG图形遮罩效果 .mask-image {mask-image: url("data:image/svgxml,%3Csvg viewBox0 0 3232…...

SQL 上升的温度

197 上升的温度 SQL架构 表: Weather ---------------------- | Column Name | Type | ---------------------- | id | int | | recordDate | date | | temperature | int | ---------------------- id 是这个表的主键 该表包含特定日期的温度信息 编写一个 SQL …...

Matlab实现最优化(附上多个完整仿真源码)

最优化是一种寻找最优解的数学方法,它在各个领域都有广泛的应用。在Matlab中,有多种工具箱和函数库可以用来实现最优化,下面我们来介绍一下如何用Matlab实现最优化。 1. 定义目标函数 在开始最优化之前,需要定义一个目标函数。目…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

【Oracle】分区表

个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了&#xff0c;很多小伙伴想体验鸿蒙电脑版操作系统&#xff0c;可惜&#xff0c;鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机&#xff0c;来体验大家心心念念的鸿蒙系统啦&#xff01;注意&#xff1a;虚拟…...