当前位置: 首页 > news >正文

改进二进制粒子群算法在配电网重构中的应用(Matlab实现)【论文复现】

 

目录

 ​

0 概述

1 配电网重构的目标函数

2 算例

3 matlab代码实现


0 概述

配电系统中存在大量的分段开关和联络开关,配电网重构正是通过调整分段开关和联络升大的组合状态来变换网络结构,用于优化配电网某些指标,使其达到最优状态。正常运行时,则通过两类开关的不同组合状态来提高系统的可靠性、稳定性或减小网损等。故障时﹐部分分段开关将打开以隔离故障支路,同时一些联络开关闭合将故障支路转移到其他馈线上或同一馈线的其余分支上,以满足供电需求。

1 配电网重构的目标函数

配电网结构是闭环设计,开环运行。配电网重构则是在保证网络拓扑结构成辐射状,满足电压约

束、支路容量约束、变压器容量约束等要求的前提下,确定使配电网某一指标或多个指标最佳的配电网运行方式。本文以配电网线路损耗最小为目标函数,即:

       

式中f为所有支路总有功损耗;i表示支路编号;N表示配电网支路总数;Ki表示开关状态变量,即О表示打开状态,1表示闭合状态;Ri表示支路i上的电阻值;Pi、Qi、Ui分别表示支路的有功功率、无功功率以及支路i前端节点的电压幅值。
配电网重构约束条件包括潮流约束、电压约束、电流约束、线路容量约束和网络拓扑结构辐射状运行约束等,如下式所示:
 

                  

2 算例

仿真算例采用 IEEE33 节点配电网络,拓扑结构如图 。该配电网包含 33 个节点和 37 条支路,

5 个常开联络开关分别位于支路33、34、35、36、37上,基准 电压为 12. 66 kV。

3 matlab代码实现

部分代码: 

部分代码:
r2=rand(n,dim);% 创建随机矩阵,大小( 20x3 )
iter=0;
maxiter=60;% 最大迭代次数
tap=[8 9 10 11 21 33 35 0 02 3 4 5 6 7 18 19 2012 13 14 34 0 0 0 0 015 16 17 29 30 31 36 32 022 23 24 25 26 27 28 37 0];
ta=tap';
%%  建立关联矩阵
data=loadcase(case33);
doc=data.branch;
nhanh=37;
nut=33;
matrix=zeros(nhanh,nut);nutdau=doc(:,1);nutcuoi=doc(:,2);
for i=1:nhanh
matrix(i,nutdau(i))=1;
matrix(i,nutcuoi(i))=1;
end%% 计算个体最优的适应度函数fpbest=zeros(1,n);for i=1:nfpbest(i)=50000;end
%% 主循环
while iter<maxiteriter=iter+1;w=wmax-(wmax-wmin)*iter/maxiter;% 指定权重系数c1=2*rand(1);c2=2*rand(1);%% 更新速度vold=vnew;for i=1:nfor j=1:dimvnew(i,j)=w*vnew(i,j)+c1*r1(i,j)*(pbest(i,j)-x(i,j))+c2*r2(i,j)*(gbest(j)-x(i,j));if abs(vnew(i,j))==abs(vold(i,j))vnew(i,j)=rand(1,1).*vnew(i,j);endendend-------
plot(dienap,'-sr')
hold on
plot(gbestvolt,'-^b')
ylabel('电压(p.u)')
xlabel('Node')
title('电压分布')
legend('配电网重组前','配电网重组后')
hold off
disp('      ')
disp('      ')
disp('      ')
disp('      ')
disp('==========================================================================================')
disp('***************************** 33节点配电网仿真结果 ***************************')
disp('==========================================================================================')
disp('                               重构前                          重构后 '          )
disp('------------------------------------------------------------------------------------------')
disp(['联络开关:              ', num2str(o), '                  ',num2str(a)])
disp('------------------------------------------------------------------------------------------')
disp(['功率损耗:                ',num2str(tonthat),' kW','                         ',num2str(fgbest),' kW'])
disp('------------------------------------------------------------------------------------------')
disp(['减少的功率损耗:      ', '_______','                             ',num2str(ploss), ' %'])
disp('------------------------------------------------------------------------------------------')
disp(['最小电压:           ',num2str(dienapmin),' pu','                          ',num2str(minvolt),' pu'])
disp('------------------------------------------------------------------------------------------')
toc

部分代码:
iter=0;
maxiter=60;% 最大迭代次数
tap=[8 9 10 11 21 33 35 0 0
    2 3 4 5 6 7 18 19 20
    12 13 14 34 0 0 0 0 0
    15 16 17 29 30 31 36 32 0
    22 23 24 25 26 27 28 37 0];
ta=tap';
%%  建立关联矩阵
data=loadcase(case33);
doc=data.branch;
nhanh=37;
nut=33;
matrix=zeros(nhanh,nut);
    nutdau=doc(:,1);
    nutcuoi=doc(:,2);
for i=1:nhanh
matrix(i,nutdau(i))=1;
matrix(i,nutcuoi(i))=1;
end

%% 计算个体最优的适应度函数
 fpbest=zeros(1,n);
 for i=1:n
     fpbest(i)=50000;
 end
%% 主循环
while iter<maxiter
    iter=iter+1;
    w=wmax-(wmax-wmin)*iter/maxiter;% 指定权重系数
    c1=2*rand(1);
    c2=2*rand(1);
    %% 更新速度
    vold=vnew;
    for i=1:n
        for j=1:dim
        vnew(i,j)=w*vnew(i,j)+c1*r1(i,j)*(pbest(i,j)-x(i,j))+c2*r2(i,j)*(gbest(j)-x(i,j));
       if abs(vnew(i,j))==abs(vold(i,j))
           vnew(i,j)=rand(1,1).*vnew(i,j);
       end
        end
    end


-------
plot(dienap,'-sr')
hold on
plot(gbestvolt,'-^b')
ylabel('电压(p.u)')
xlabel('Node')
title('电压分布')
legend('配电网重组前','配电网重组后')
hold off
disp('      ')
disp('      ')
disp('      ')
disp('      ')
disp('==========================================================================================')
disp('***************************** 33节点配电网仿真结果 ***************************')
disp('==========================================================================================')
disp('                               重构前                          重构后 '          )
disp('------------------------------------------------------------------------------------------')
disp(['联络开关:              ', num2str(o), '                  ',num2str(a)])
disp('------------------------------------------------------------------------------------------')
disp(['功率损耗:                ',num2str(tonthat),' kW','                         ',num2str(fgbest),' kW'])
disp('------------------------------------------------------------------------------------------')
disp(['减少的功率损耗:      ', '_______','                             ',num2str(ploss), ' %'])
disp('------------------------------------------------------------------------------------------')
disp(['最小电压:           ',num2str(dienapmin),' pu','                          ',num2str(minvolt),' pu'])
disp('------------------------------------------------------------------------------------------')
toc

相关文章:

改进二进制粒子群算法在配电网重构中的应用(Matlab实现)【论文复现】

目录 ​ 0 概述 1 配电网重构的目标函数 2 算例 3 matlab代码实现 0 概述 配电系统中存在大量的分段开关和联络开关&#xff0c;配电网重构正是通过调整分段开关和联络升大的组合状态来变换网络结构,用于优化配电网某些指标&#xff0c;使其达到最优状态。正常运行时,则通…...

【文章系列解读】Nerf

1. Nerf NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 2020年8月3日 &#xff08;0&#xff09;总结 NeRF工作的过程可以分成两部分&#xff1a;三维重建和渲染。&#xff08;1&#xff09;三维重建部分本质上是一个2D到3D的建模过程&#xff…...

基于springboot,vue网上订餐系统

开发工具&#xff1a;IDEA 服务器&#xff1a;Tomcat9.0&#xff0c; jdk1.8 项目构建&#xff1a;maven 数据库&#xff1a;mysql5.7 前端技术 &#xff1a;VueElementUI 服务端技术&#xff1a;springbootmybatisredis 本系统分用户前台和管理后台两部分&#xff0c;项…...

Nautilus Chain 更换全新测试网,主网即将在不久上线

目前&#xff0c;Nautilus Chain 正在为主网上线前的最后阶段做准备&#xff0c;据悉该链更新了全新的测试网&#xff0c;在此前版本的测试网的基础上进行了全新的技术升级&#xff0c;最新测试网版本与生态发展的技术规划更为贴近。本次测试网升级将会是最后一次测试网版本的迭…...

攻防世界web:Web_php_wrong_nginx_config,python3后门

网上的wp中关于Web_php_wrong_nginx_config的后门代码都是python2的&#xff08;源码来自&#xff1a;Weevely&#xff1a;一个 PHP 混淆后门的代码分析 - Phukers Blog&#xff09; 以下是转换成python3的版本 # encoding: utf-8from random import randint, choice from ha…...

【VUE】解决图片视频加载缓慢/首屏加载白屏的问题

1 问题描述 在 Vue3 项目中&#xff0c;有时候会出现图片视频加载缓慢、首屏加载白屏的问题 2 原因分析 通常是由以下原因导致的&#xff1a; 图片或视频格式不当&#xff1a;如果图片或视频格式选择不当&#xff0c;比如选择了无损压缩格式&#xff0c;可能会导致文件大小过大…...

spring复习:(35)在getBean时,在哪里根据普通bean和工厂bean进行区分处理来返回的?

在AbstractBeanFactory的doGetBean方法&#xff1a; 调用的getObjectForBeanInstance方法部分代码如下&#xff1a; 如果不是工厂bean,则直接将实例返回&#xff0c;否则调用getObjectFromFactoryBean方法获取工厂bean的getObject方法返回的对象 protected Object getObjectF…...

Jenkins全栈体系(二)

Jenkins 第三章 Jenkins Git Maven 自动化部署配置 十、几种构建方式 快照依赖构建/Build whenever a SNAPSHOT dependency is built 当依赖的快照被构建时执行本job 触发远程构建 (例如,使用脚本) 远程调用本job的restapi时执行本job job依赖构建/Build after other proj…...

c++11 标准模板(STL)(std::basic_istream)(九)

定义于头文件 <istream> template< class CharT, class Traits std::char_traits<CharT> > class basic_istream : virtual public std::basic_ios<CharT, Traits> 类模板 basic_istream 提供字符流上的高层输入支持。受支持操作包含带格式的…...

OpenSource - Spring Startup Ananlyzer

文章目录 &#x1f680;Optimization of Spring Startup核心能力&#x1f4c8;Spring应用启动数据采集报告应用启动时长优化 &#x1f4c8;Spring应用启动数据采集报告安装jar包配置项应用启动自定义扩展 &#x1f680;应用启动时长优化支持异步化的Bean类型接入异步Bean优化 开…...

ES6迭代器、Set、Map集合和async异步函数

目录 迭代器 Iterator 的作用 Iterator 的遍历过程 Set Map集合 map和对象区别? async异步函数 迭代器 迭代器&#xff08;Iterator&#xff09;就是这样一种机制。它是一种接口&#xff0c;为各种不同的数据结构提供统一的访问机制。任何数据结构只要部署Iterator接口&…...

mac android studio设置跟mac系统一样的快捷键

mac版的android studio 跟mac系统的快捷键不一样,主要修改了下面几组操作,为了跟mac系统快捷键相同 setting->Keymap 搜索bottom 修改3个快捷键: cmd↓ 设置让鼠标移动到屏幕最后面 shiftcmd↓ 选中从当前位置到屏幕最下面 option↓. 或者 end 滚动到屏幕最下方 // 因为默认…...

Java-通过IP获取真实地址

文章目录 前言功能实现测试 前言 最近写了一个日志系统&#xff0c;需要通过访问的 IP 地址来获取真实的地址&#xff0c;并且存到数据库中&#xff0c;我也是在网上看了一些文章&#xff0c;遂即整理了一下供大家参考。 功能实现 这个是获取正确 IP 地址的方法&#xff0c;可…...

Java代码实现word转PDF

import com.spire.doc.Document; import com.spire.doc.FileFormat; import lombok.extern.slf4j.Slf4j; public class WordConvertPdf { /** * word转pdf * param wordPathName word文件路径及名称 * param pdfPathName pdf生成路径及名称 */ public static void wordToPdf(…...

Java设计模式-简单工厂(Simple Factory)模式

介绍 简单工厂&#xff08;Simple Factory&#xff09;模式&#xff0c;又称为静态工厂方法&#xff08;Static Factory Method&#xff09;模式。 由一个工厂类来创建具体产品&#xff0c;即创建具体类的实例。 简单工厂模式从概念上涉及三个角色&#xff1a; 抽象产品角色…...

微软所有业务线梳理

目录 一、Windows 二、Office 三、Surface 四、Xbox 五、Azure 六、Dynamics 七、LinkedIn 八、Bing...

SDN系统方法 | 1. 概述

随着互联网和数据中心流量的爆炸式增长&#xff0c;SDN已经逐步取代静态路由交换设备成为构建网络的主流方式&#xff0c;本系列是免费电子书《Software-Defined Networks: A Systems Approach》的中文版&#xff0c;完整介绍了SDN的概念、原理、架构和实现方式。原文: Softwar…...

【数据分享】1929-2022年全球站点的逐日平均压力数据(Shp\Excel\12000个站点)

气象数据是在各项研究中都经常使用的数据&#xff0c;气象指标包括气温、风速、降水、能见度等指标&#xff0c;说到气象数据&#xff0c;最详细的气象数据是具体到气象监测站点的数据&#xff01; 对于具体到监测站点的气象数据&#xff0c;之前我们分享过1929-2022年全球气象…...

Profibus DP主站转Modbus TCP网关profibus从站地址范围

远创智控YC-DPM-TCP网关。这款产品在Profibus总线侧实现了主站功能&#xff0c;在以太网侧实现了ModbusTcp服务器功能&#xff0c;为我们的工业自动化网络带来了全新的可能。 远创智控YC-DPM-TCP网关是如何实现这些功能的呢&#xff1f;首先&#xff0c;让我们来看看它的Profib…...

MySQL子查询

&#x1f607;作者介绍&#xff1a;一个有梦想、有理想、有目标的&#xff0c;且渴望能够学有所成的追梦人。 &#x1f386;学习格言&#xff1a;不读书的人,思想就会停止。——狄德罗 ⛪️个人主页&#xff1a;进入博主主页 &#x1f5fc;专栏系列&#xff1a;进入MySQL专栏知…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...