当前位置: 首页 > news >正文

STM32MP157驱动开发——按键驱动(休眠与唤醒)

文章目录

  • “休眠-唤醒”机制:
  • APP执行过程
  • 内核函数
    • 休眠函数
    • 唤醒函数
  • 休眠与唤醒方式的按键驱动程序(stm32mp157)
    • 驱动程序框架
    • button_test.c
    • gpio_key_drv.c
    • Makefile
    • 修改设备树文件
    • 编译测试

“休眠-唤醒”机制:

当应用程序必须等待某个事件发生,比如必须等待按键被按下时,可以使用“休眠-唤醒”机制:

  • ① APP 调用 read 等函数试图读取数据,比如读取按键;
  • ② APP 进入内核态,也就是调用驱动中的对应函数,发现有数据则复制到用户空间并马上返回;
  • ③ 如果 APP 在内核态,也就是在驱动程序中发现没有数据,则 APP 休眠
  • ④ 当有数据时,比如当按下按键时,驱动程序的中断服务程序被调用,它会记录数据、唤醒 APP
  • ⑤ APP 继续运行它的内核态代码,也就是驱动程序中的函数,复制数据到用户空间并马上返回。

APP执行过程

在这里插入图片描述

  • 驱动中没有数据时,APP1 在内核态执行到 drv_read 时会休眠
  • 所谓休眠就是把自己的状态改为非 RUNNING,这样内核的调度器就不会让它运行。
  • 当按下按键,驱动程序中的中断服务程序被调用,它会记录数据,并唤醒 APP1。所以唤醒就是把程序的状态改为 RUNNING,这样内核的调度器有合适的时间就会让它运行。
  • 当 APP1 再次运行时,就会继续执行 drv_read 中剩下的代码,把数据复制回用户空间,返回用户空间。
  • 在 APP的read到内核态的drv_read函数中(进程上下文),也就是在 APP1 的执行过程中,它是可以休眠的
  • 在中断处理函数中(属于中断上下文),不能休眠,也就是不能调用会导致休眠的函数。

内核调度器负责维护该链表,链表里面保存的是线程,如果线程的状态为RUNNING,则会找到合适的时间就会让它运行,如果是非RUNNING,内核的调度器就不会让它运行。

内核函数

参考内核源码: include\linux\wait.h

休眠函数

函数说明
wait_event_interruptible(wq, condition)休眠,直到 condition 为真;休眠期间是可被打断的,可以被信号打断
wait_event(wq, condition)休眠,直到 condition 为真;退出的唯一条件是 condition 为真,信号也不好使
wait_event_interruptible_timeout(wq,condition, timeout)休眠,直到 condition 为真或超时;休眠期间是可被打断的,可以被信号打断
wait_event_timeout(wq, condition,timeout)休眠,直到 condition 为真;退出的唯一条件是 condition 为真,信号也不好使

比较重要的参数就是:

  • ① wq:waitqueue,等待队列
    • 休眠时除了把程序状态改为非 RUNNING 之外,还要把进程/进程放入wq 中,以后中断服务程序要从 wq 中把它取出来唤醒。
    • 没有 wq 的话,茫茫人海中,中断服务程序去哪里找到你?
  • ② condition
    • 这可以是一个变量,也可以是任何表达式。表示“一直等待,直到condition 为真”

唤醒函数

函数说明
wake_up_interruptible(x)唤醒 x 队列中状态为“TASK_INTERRUPTIBLE”的线程,只唤醒其中的一个线程
wake_up_interruptible_nr(x, nr)唤醒 x 队列中状态为“TASK_INTERRUPTIBLE”的线程,只唤醒其中的 nr 个线程
wake_up_interruptible_all(x)唤醒 x 队列中状态为“TASK_INTERRUPTIBLE”的线程,唤醒其中的所有线程
wake_up(x)唤 醒 x 队 列 中 状 态 为 “ TASK_INTERRUPTIBLE ” 或“TASK_UNINTERRUPTIBLE”的线程,只唤醒其中的一个线程
wake_up_nr(x, nr)唤 醒 x 队 列 中 状 态 为 “ TASK_INTERRUPTIBLE ” 或“TASK_UNINTERRUPTIBLE”的线程,只唤醒其中 nr 个线程
wake_up_all(x)唤 醒 x 队 列 中 状 态 为 “ TASK_INTERRUPTIBLE ” 或“TASK_UNINTERRUPTIBLE”的线程,唤醒其中的所有线程

休眠与唤醒方式的按键驱动程序(stm32mp157)

驱动程序框架

在这里插入图片描述

要休眠的线程,放在 wq 队列里,中断处理函数从 wq 队列里把它取出来唤醒。

代码编写内容

  • ① 初始化 wq 队列
  • 在驱动的 read 函数中,调用 wait_event_interruptible:
    • 它本身会判断 event 是否为 FALSE,如果为 FASLE 表示无数据,则休眠。当从 wait_event_interruptible 返回后,把数据复制回用户空间。
  • 在中断服务程序里
    • 设置 event 为 TRUE,并调用 wake_up_interruptible 唤醒线程。

button_test.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>/** ./button_test /dev/100ask_button0**/
int main(int argc, char **argv)
{int fd;int val;/* 1. 判断参数 */if (argc != 2) {printf("Usage: %s <dev>\n", argv[0]);return -1;}/* 2. 打开文件 */fd = open(argv[1], O_RDWR);if (fd == -1){printf("can not open file %s\n", argv[1]);return -1;}while (1){/* 3. 读文件 */read(fd, &val, 4);printf("get button : 0x%x\n", val);}close(fd);return 0;
}

gpio_key_drv.c

使用环形缓冲区来保存按键值,相比于全局变量,可以避免被覆盖的问题

#include <linux/module.h>#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>struct gpio_key{int gpio;struct gpio_desc *gpiod;int flag;int irq;
} ;static struct gpio_key *gpio_keys_first;/* 主设备号                                                                 */
static int major = 0;
static struct class *gpio_key_class;/* 环形缓冲区 */
#define BUF_LEN 128
static int g_keys[BUF_LEN];
static int r, w;//r,w是指针,指向读写的位置#define NEXT_POS(x) ((x+1) % BUF_LEN)static int is_key_buf_empty(void)
{return (r == w);//一开始rw都是0,表示空
}static int is_key_buf_full(void)
{return (r == NEXT_POS(w));//下一个写的位置等于r表示满,容量为128字节的buffer存储到127表示满了
}static void put_key(int key)
{if (!is_key_buf_full()){g_keys[w] = key;//把数据放入w位置w = NEXT_POS(w);//移动w}
}static int get_key(void)
{int key = 0;if (!is_key_buf_empty()){key = g_keys[r];//从r位置读数据r = NEXT_POS(r);//移动r}return key;
}static DECLARE_WAIT_QUEUE_HEAD(gpio_key_wait);//该队列使用宏来初始化/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t gpio_key_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);int err;int key;wait_event_interruptible(gpio_key_wait, !is_key_buf_empty());key = get_key();err = copy_to_user(buf, &key, 4);return 4;
}/* 定义自己的file_operations结构体                                              */
static struct file_operations gpio_key_drv = {.owner	 = THIS_MODULE,.read    = gpio_key_drv_read,
};static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{struct gpio_key *gpio_key = dev_id;int val;int key;val = gpiod_get_value(gpio_key->gpiod);printk("key %d %d\n", gpio_key->gpio, val);key = (gpio_key->gpio << 8) | val;put_key(key);wake_up_interruptible(&gpio_key_wait);return IRQ_HANDLED;
}/* 1. 从platform_device获得GPIO* 2. gpio=>irq* 3. request_irq*/
static int gpio_key_probe(struct platform_device *pdev)
{int err;struct device_node *node = pdev->dev.of_node;int count;int i;enum of_gpio_flags flag;printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);count = of_gpio_count(node);if (!count){printk("%s %s line %d, there isn't any gpio available\n", __FILE__, __FUNCTION__, __LINE__);return -1;}gpio_keys_first = kzalloc(sizeof(struct gpio_key) * count, GFP_KERNEL);for (i = 0; i < count; i++){gpio_keys_first[i].gpio = of_get_gpio_flags(node, i, &flag);if (gpio_keys_first[i].gpio < 0){printk("%s %s line %d, of_get_gpio_flags fail\n", __FILE__, __FUNCTION__, __LINE__);return -1;}gpio_keys_first[i].gpiod = gpio_to_desc(gpio_keys_first[i].gpio);gpio_keys_first[i].flag = flag & OF_GPIO_ACTIVE_LOW;gpio_keys_first[i].irq  = gpio_to_irq(gpio_keys_first[i].gpio);}for (i = 0; i < count; i++){err = request_irq(gpio_keys_first[i].irq, gpio_key_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "100ask_gpio_key", &gpio_keys_first[i]);}/* 注册file_operations 	*/major = register_chrdev(0, "100ask_gpio_key", &gpio_key_drv);  /* /dev/gpio_key */gpio_key_class = class_create(THIS_MODULE, "100ask_gpio_key_class");if (IS_ERR(gpio_key_class)) {printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);unregister_chrdev(major, "100ask_gpio_key");return PTR_ERR(gpio_key_class);}device_create(gpio_key_class, NULL, MKDEV(major, 0), NULL, "100ask_gpio_key"); /* /dev/100ask_gpio_key */return 0;}static int gpio_key_remove(struct platform_device *pdev)
{//int err;struct device_node *node = pdev->dev.of_node;int count;int i;device_destroy(gpio_key_class, MKDEV(major, 0));class_destroy(gpio_key_class);unregister_chrdev(major, "100ask_gpio_key");count = of_gpio_count(node);for (i = 0; i < count; i++){free_irq(gpio_keys_first[i].irq, &gpio_keys_first[i]);}kfree(gpio_keys_first);return 0;
}static const struct of_device_id my_keys[] = {{ .compatible = "first_key,gpio_key" },{ },
};/* 1. 定义platform_driver */
static struct platform_driver gpio_keys_driver = {.probe      = gpio_key_probe,.remove     = gpio_key_remove,.driver     = {.name   = "my_gpio_key",.of_match_table = my_keys,},
};/* 2. 在入口函数注册platform_driver */
static int __init gpio_key_init(void)
{int err;printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);err = platform_driver_register(&gpio_keys_driver); return err;
}/* 3. 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数*     卸载platform_driver*/
static void __exit gpio_key_exit(void)
{printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);platform_driver_unregister(&gpio_keys_driver);
}/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */module_init(gpio_key_init);
module_exit(gpio_key_exit);MODULE_LICENSE("GPL");

Makefile

# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH,          比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH,          比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin 
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
#       请参考各开发板的高级用户使用手册KERN_DIR =   /home/book/100ask_stm32mp157_pro-sdk/Linux-5.4all:make -C $(KERN_DIR) M=`pwd` modules $(CROSS_COMPILE)gcc -o button_test button_test.c
clean:make -C $(KERN_DIR) M=`pwd` modules cleanrm -rf modules.order  button_test# 参考内核源码drivers/char/ipmi/Makefile
# 要想把a.c, b.c编译成ab.ko, 可以这样指定:
# ab-y := a.o b.o
# obj-m += ab.oobj-m += gpio_key_drv.o

修改设备树文件

在这里插入图片描述
对于一个引脚要用作中断时,

  • a) 要通过 PinCtrl 把它设置为 GPIO 功能;【ST 公司对于 STM32MP157 系列芯片,GPIO 为默认模式 不需要再进行配置Pinctrl 信息】
  • b) 表明自身:是哪一个 GPIO 模块里的哪一个引脚【修改设备树】

打开内核的设备树文件:arch/arm/boot/dts/stm32mp157c-100ask-512d-lcd-v1.dts

gpio_keys_first {compatible = "first_key,gpio_key";gpios = <&gpiog 3 GPIO_ACTIVE_LOW&gpiog 2 GPIO_ACTIVE_LOW>;
};

与此同时,需要把用到引脚的节点禁用

注意,如果其他设备树文件也用到该节点,需要设置属性为disabled状态,在arch/arm/boot/dts目录下执行如下指令查找哪些设备树用到该节点

grep "&gpiog" * -nr

如果用到该节点,需要添加属性去屏蔽:

status = "disabled"; 

在这里插入图片描述

编译测试

首先要设置 ARCH、CROSS_COMPILE、PATH 这三个环境变量后,进入 ubuntu 上板子内核源码的目录,在Linux内核源码根目录下,执行如下命令即可编译 dtb 文件:

make dtbs V=1

编译好的文件在路径由DTC指定,移植设备树到开发板的共享文件夹中,先保存源文件,然后覆盖源文件,重启后会挂载新的设备树,进入该目录查看是否有新添加的设备节点

cd /sys/firmware/devicetree/base 

编译驱动程序,在Makefile文件目录下执行make指令,此时,目录下有编译好的内核模块gpio_key_drv.ko和可执行文件button_test文件移植到开发板上

确定一下烧录系统:cat /proc/mounts,查看boot分区挂载的位置,将其重新挂载在boot分区:mount /dev/mmcblk2p2 /boot,然后将共享文件夹里面的设备树文件拷贝到boot目录下,这样的话设备树文件就在boot目录下

cp /mnt/stm32mp157c-100ask-512d-lcd-v1.dtb /boot

重启后挂载,运行

insmod -f gpio_key_drv.ko // 强制安装驱动程序
ls /dev/my_gpio_key
./button_test /dev/my_gpio_key & //后台运行,此时prink函数打印的内容看不到

然后按下按键

相关文章:

STM32MP157驱动开发——按键驱动(休眠与唤醒)

文章目录 “休眠-唤醒”机制&#xff1a;APP执行过程内核函数休眠函数唤醒函数 休眠与唤醒方式的按键驱动程序(stm32mp157)驱动程序框架button_test.cgpio_key_drv.cMakefile修改设备树文件编译测试 “休眠-唤醒”机制&#xff1a; 当应用程序必须等待某个事件发生&#xff0c…...

全面解析 SOCKS5 代理与 HTTP 代理的对比与应用

一、 SOCKS5 代理与 HTTP 代理的基本原理 SOCKS5 代理&#xff1a;SOCKS5 是一种网络协议&#xff0c;它可以在传输层&#xff08;Transport Layer&#xff09;代理 TCP 和 UDP 请求。SOCKS5 代理不解析请求内容&#xff0c;而是直接将数据中转至目标服务器&#xff0c;支持更广…...

STM32 HEX文件和BIN文件格式区别keil中的配置与生成

一、区别 HEX 文件: 是包括地址信息的,在烧写或下载HEX文件的时候,一般都不需要用户指定地址,因为HEX文件内部的信息已经包括了地址。HEX文件是用ASCII来表示二进制的数值。例如一般8-BIT的二进制数值0x3F,用ASCII来表示就需要分别表示字符3和字符F,每个字符需要一个BYTE…...

RabbitMQ优先级队列的使用

RabbitMQ优先级队列的使用 生产者 public class PriorityQueue {public static void Send(){string path AppDomain.CurrentDomain.BaseDirectory;string tag path.Split(/, \\).Last(s > !string.IsNullOrEmpty(s));Console.WriteLine($"这里是 {tag} 启动了。。&…...

MAC 推送证书不受信任

配置推送证书的时候&#xff0c;一打开就变成不受信任&#xff0c;搜了很多解决版本。 由于苹果修改相关规定&#xff0c;推送证书 打开Apple PKI - Apple 下载AppleWWDRCA文件&#xff0c;选择G4,双击安装之后&#xff0c;证书已经变为受信任。 AppleWWDRCA(Apple Worldwid…...

Gitee创建分支

在使用Gitee进行代码托管时&#xff0c;分支是一个非常重要的概念。它可以让我们在不同的开发阶段、不同的团队成员之间协作开发&#xff0c;提高团队工作效率。因此&#xff0c;下面将介绍如何在Gitee仓库中建立分支。 一、在Gitee上创建新的分支 在讲解如何在Gitee上创建新…...

集群间ssh配置免密登录

ssh免密配置&#xff0c;可以将ssh生成的密钥分发给目标主机&#xff0c;之后再用ssh访问目标主机时就无需输入密码 下面我们来配置用centos71免密登录centos72主机 使用下面指令生成一个密钥 ssh-keygen其中会提示&#xff0c;是否输入密码短语&#xff0c;这里不输入&#…...

YOLOV8改进:CVPR 2023 | SCConv: 即插即用的空间和通道重建卷积

1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。 2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。 2.涨点效果:添加 SCConv,经过测试,有效涨点。…...

人员定位安全管控系统:提升安全管理水平的智能解决方案

在当今社会&#xff0c;人员安全管理成为各行各业关注的焦点。为了保障人员的安全和提高管理效率&#xff0c;人员定位安全管控系统应运而生。 人员定位安全管控系统采用多种定位技术来实现对人员位置的准确定位&#xff0c;如GPS&#xff08;全球定位系统&#xff09;、Wi-Fi…...

数据结构(二)

目录 Trie树 并查集 堆 Trie树 作用:用来高效地存储和查找字符串集合的数据结构 基本形式: 模板代码如下: #include<iostream> using namespace std;const int N 100010;//idx代表当前用到哪个下标 //既是根节点&#xff0c;又是空节点 //cnt存储的是以当前点结尾的…...

logback 自定义log字段(MDC)推送到logstash(spring boot + logback+ logstash)

直接上代码&#xff1a; 1.创建FIlter&#xff0c;往 MDC 里面追加内容 WebFilter Component public class LogBackFilter implements Filter {Overridepublic void init(FilterConfig filterConfig) throws ServletException {}Overridepublic void doFilter(ServletRequest…...

1253. 重构 2 行二进制矩阵

1253. 重构 2 行二进制矩阵 给你一个 2 行 n 列的二进制数组&#xff1a; 矩阵是一个二进制矩阵&#xff0c;这意味着矩阵中的每个元素不是 0 就是 1。第 0 行的元素之和为 upper。第 1 行的元素之和为 lower。第 i 列&#xff08;从 0 开始编号&#xff09;的元素之和为 cols…...

安全—01day

文章目录 1. 编码1.1 ASCLL编码1.2 URL编码1.3 Unicode编码1.4 HTML编码1.5 Base64编码 2. form表单2.1 php接收form表单2.2 python接收form表单 1. 编码 1.1 ASCLL编码 ASCII 是基于拉丁字母的一套电脑编码系统&#xff0c;主要用于显示现代英语和其他西欧语言。它是最通用的…...

【Git】Please commit your changes or stash them before you merge的解决方法

背景 我从远程库中clone了一个项目进行开发&#xff0c;修改了一部分代码后&#xff0c;远程库有更新&#xff0c;我想将远程更新拉取下来&#xff0c;并且保留自己的更改&#xff0c;使用git pull origin master命令&#xff0c;有报错&#xff1a; error: Your local chang…...

网卡收发包系统结构收发包流程,tcp/ip协议,socket套接字缓冲区,滑动窗口,mtu/mss

MTU和MSS的区别 MTU和MSS的区别 TCP 的 MTU & MSS MTU是在那一层&#xff1f;MSS在那一层&#xff1f; MTU是在数据链路层的载荷大小也就是传给网络层的大小&#xff0c;mss是在传输层的载荷大小也就是传给应用层的大小 mss是根据mtu得到的 1、MTU&#xff1a; Maximu…...

VUE之axios使用,跨域问题,拦截器添加Token

参考资料: 参考视频 视频资料及个人demo Axios中文文档 VUE之基本部署及VScode常用插件 VUE之基本组成和使用 VUE之Bootstrap和Element-UI的使用 准备工作: 关于SpringBoot和SpringCloud的搭建,以及mybatis-plus的整合见本人之前的CSDN博客,下面编写get请求和post请求…...

阿里云函数计算签名认证(iOS实现细节备注)

1、使用第三方库 AFNetworking进行网络请求。 2、阿里云函数计算签名认证文档 3、文档中添加 CanonicalizedFCHeaders 可以不用添加&#xff0c;CanonicalizedResource如何没有设置Path&#xff0c;在末尾加入“/”就可以了。 4、主要还是 hmac-sha256 签名认证&#xff0c;在实…...

成都爱尔蔡裕:泡在“糖”里的脆弱血管,暴露在眼睛深处

糖尿病是一组由多病因引起的以慢性高血糖为特征的终身性代谢性疾病。长期血糖增高&#xff0c;大血管、微血管受损并危及心、脑、肾、周围神经、眼睛、足等。医生临床数据显示&#xff0c;糖尿病发病后10年左右&#xff0c;将有30%&#xff5e;40%的患者至少会发生一种并发症&a…...

神经网络小记-过拟合与欠拟合

过拟合 过拟合&#xff08;Overfitting&#xff09;是机器学习和深度学习中常见的问题&#xff0c;指模型在训练数据上表现得非常好&#xff0c;但在新数据上表现较差&#xff0c;即模型过度拟合了训练数据的特征&#xff0c;导致泛化能力不足。 解决过拟合的方式包括以下几种…...

外贸行业企业邮箱选择:安全好用的邮箱服务

随着全球化的发展&#xff0c;外贸行业在全球经济中越来越重要。作为一家从事对外贸易的企业&#xff0c;可靠、安全、易用的邮箱系统对于成功的国际交易至关重要。为您的企业选择正确的邮箱解决方案可能是一个挑战。为了使选择过程更加简化&#xff0c;我们在这里提供了一些提…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...