蓝桥杯专题-真题版含答案-【垒骰子_动态规划】【抽签】【平方怪圈】【凑算式】
- 点击跳转专栏=>Unity3D特效百例
- 点击跳转专栏=>案例项目实战源码
- 点击跳转专栏=>游戏脚本-辅助自动化
- 点击跳转专栏=>Android控件全解手册
- 点击跳转专栏=>Scratch编程案例
- 点击跳转=>软考全系列
- 点击跳转=>蓝桥系列
👉关于作者
专注于Android/Unity和各种游戏开发技巧,以及各种资源分享(网站、工具、素材、源码、游戏等)
有什么需要欢迎底部卡片私我,获取更多支持,交流让学习不再孤单。
👉实践过程
需要所有整理的文档可底部卡片联系我,直接发压缩包。
😜垒骰子_动态规划
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」
544
#define MOD 1000000007#include <map>
#include <vector>
#include <iostream>using namespace std;long long dp[2][7];//dp[i][j]表示有i层,限定朝上的数字为j的稳定方案数
int n, m;
bool conflict[7][7];
map<int, int> op;void init() {op[1] = 4;op[4] = 1;op[2] = 5;op[5] = 2;op[3] = 6;op[6] = 3;
}int main(int argc, const char *argv[]) {init();scanf("%d %d", &n, &m);for (int i = 0; i < m; ++i) {int a, b;scanf("%d %d", &a, &b);conflict[a][b] = true;conflict[b][a] = true;}
// 输入完成for (int j = 1; j <= 6; ++j) {dp[0][j] = 1;}int cur = 0;
// 迭代层数for (int level = 2; level <= n; ++level) {cur = 1 - cur;
// 尝试将6个面放在当前一层朝上的方向for (int j = 1; j <= 6; ++j) {dp[cur][j] = 0;
// 将与op[j]不冲突的上一层格子里面的数累加起来for (int i = 1; i <= 6; ++i) {if (conflict[op[j]][i])continue;//冲突的面朝上是不可取的dp[cur][j] = (dp[cur][j] + dp[1 - cur][i]) % MOD;}}}long long sum = 0;for (int k = 1; k <= 6; ++k) {sum = (sum + dp[cur][k]) % MOD;}// 快速幂,求4的n次方long long ans = 1;long long tmp = 4;long long p = n;while (p != 0) {if (p & 1 == 1) ans = (ans * tmp) % MOD;tmp = (tmp * tmp) % MOD;p >>= 1;}printf("%d\n", (sum * ans) % MOD);return 0;
}
😜抽签
X星球要派出一个5人组成的观察团前往W星。
其中:
A国最多可以派出4人。
B国最多可以派出2人。
C国最多可以派出2人。
…
那么最终派往W星的观察团会有多少种国别的不同组合呢?
下面的程序解决了这个问题。
数组a[] 中是每个国家可以派出的最多的名额。
程序执行结果为:
DEFFF
CEFFF
CDFFF
CDEFF
CCFFF
CCEFF
CCDFF
CCDEF
BEFFF
BDFFF
BDEFF
BCFFF
BCEFF
BCDFF
BCDEF
…
(以下省略,总共101行)
#include <stdio.h>
#define N 6
#define M 5
#define BUF 1024
void f(int a[], int k, int m, char b[])
{
int i,j;
if(k==N){b[M] = 0;if(m==0) printf("%s\n",b);return;
}for(i=0; i<=a[k]; i++){for(j=0; j<i; j++) b[M-m+j] = k+'A';______________________; //填空位置
}
}
int main()
{
int a[N] = {4,2,2,1,1,3};
char b[BUF];
f(a,0,M,b);
return 0;
}
#include <stdio.h>
#define N 6
#define M 5
#define BUF 1024
int ans;
/** k=a数组的下标,* m代表人数,初始为5* b字符串*/
void f(int a[], int k, int m, char b[])
{int i,j;if(k==N){b[M] = 0;//字符串结尾的标志if(m==0) {printf("%s\n",b);ans++;}return;}for(i=0; i<=a[k]; i++){//试着将k国家,派出i人for(j=0; j<i; j++) //填充buf,有i人就填i个国家符号(k+'A')b[M-m+j] = k+'A';
// ______________________; //填空位置f(a,k+1,m-i,b);}
}
int main()
{int a[N] = {4,2,2,1,1,3};char b[BUF];f(a,0,M,b);printf("%d\n",ans);return 0;
}
😜平方怪圈
如果把一个正整数的每一位都平方后再求和,得到一个新的正整数。
对新产生的正整数再做同样的处理。
如此一来,你会发现,不管开始取的是什么数字,
最终如果不是落入1,就是落入同一个循环圈。
请写出这个循环圈中最大的那个数字。
请填写该最大数字。
#include <iostream>
#include <sstream>
using namespace std;int extract(int start){string str;stringstream ss;ss<<start;ss>>str;int ans=0;for (int i = 0; i < str.length(); ++i) {ans+=(str[i]-'0')*(str[i]-'0');}return ans;
}
int main(int argc, const char * argv[]) {int start=3;int cnt=0;while(cnt<1000){cout<<start<<endl;int sum =extract(start);start=sum;cnt++;}return 0;
}
😜凑算式
B DEF
A + --- + ------- = 10C GHI
这个算式中AI代表19的数字,不同的字母代表不同的数字。
比如:
6+8/3+952/714 就是一种解法,
5+3/1+972/486 是另一种解法。
这个算式一共有多少种解法?
#include <iostream>
#include <cmath>
using namespace std;
int a[]={1,2,3,4,5,6,7,8,9};int ans;
bool check(){int x = a[3] * 100 + a[4] * 10 + a[5];int y = a[6] * 100 + a[7] * 10 + a[8];if((a[1] * y + a[2] * x) % (y * a[2])==0 && a[0] + (a[1] * y + a[2] * x) / (y * a[2]) == 10)return true;return false;
}
/*递归回溯生成全排列,适用于无重复元素的情况* 考虑第k位,前面已经排定*/
void f(int k) {if(k==9){//一种排列已经生产if(check())ans++;}
// 从k往后的每个数字都可以放在k位for (int i = k; i < 9; ++i) {{int t=a[i];a[i]=a[k];a[k]=t;}f(k+1);//递归{int t=a[i];a[i]=a[k];a[k]=t;}//回溯}
}
int main(int argc, const char * argv[]) {
// f(0);do{if(check())ans++;}while(next_permutation(a,a+9));cout<<ans<<endl;return 0;
}
👉其他
📢作者:小空和小芝中的小空
📢转载说明-务必注明来源:https://zhima.blog.csdn.net/
📢这位道友请留步☁️,我观你气度不凡,谈吐间隐隐有王者霸气💚,日后定有一番大作为📝!!!旁边有点赞👍收藏🌟今日传你,点了吧,未来你成功☀️,我分文不取,若不成功⚡️,也好回来找我。
温馨提示:点击下方卡片获取更多意想不到的资源。
相关文章:

蓝桥杯专题-真题版含答案-【垒骰子_动态规划】【抽签】【平方怪圈】【凑算式】
点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列 👉关于作者 专注于Android/Unity和各种游…...
kubernetes调试利器——kubectl debug工具
通常情况下,业务容器所使用的镜像是非常精简的,而一旦业务容器出现问题,通过kubectl exec进入到容器时,我们会发现自己需要使用的工具都没有,也无法通过apt, apt-get, yum等包管理工具下载需要的工具。 想要解决这个尴…...

浅谈es5如何保证并发请求的返回顺序
最近在公司实习写的是es5,在和回调地狱经过一番拉扯之后写下这篇文章,也算是体验了一把没有promise的时代 假设我们的div有一个日历列表,但是由于大小关系只能每次显示2天的信息,项目限制只能使用es5,不能使用es6的pro…...
深入浅出Pytorch函数——torch.squeeze
分类目录:《深入浅出Pytorch函数》总目录 相关文章: 深入浅出Pytorch函数——torch.squeeze 深入浅出Pytorch函数——torch.unsqueeze 将输入张量形状为1的维度去除并返回。比如输入向量的形状为 A 1 B 1 C 1 D A\times1\times B\times1\times C…...
【LeetCode】121.买卖股票的最佳时机
题目 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易中获取的最大…...
【力扣】74. 搜索二维矩阵 <二分法>
【力扣】74. 搜索二维矩阵 给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非递减顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则&am…...
Spring Task+Cron表达式
不需要导入坐标spring-context(包含在了spring-boot-starter) 在启动类添加EnableScheduleing开启任务调度 单独建个定时任务包task,创建定时任务类MyTask 在定时任务类添加Component 在类的方法上添加Scheduled(cron “cron表达…...

你们公司的【前端项目】是如何做测试的?字节10年测试经验的我这样做的...
前端项目也叫web端项目(通俗讲就是网页上的功能)是我们能够在屏幕上看到并产生交互的体验。 前端项目如何做测试? 要讲清楚这个问题,先需要你对测试流程现有一个全局的了解,先上一张测试流程图: 测试流程…...

华为战略方法论:BLM模型之关键任务与依赖关系
内容简介 在 BLM 模型中,执行部分包括四个模块,分别是: 关键任务与依赖关系;组织与绩效;人才;氛围与文化。 详细内容,大家可以参看下面这张图。 这四个模块其实是可以进一步划分成两个关键点…...
django的ORM模板的fake更新
django存量数据表的migraions记录丢失,若要更新表结构,则需用到fake,否则报错: 解决步骤如下: 1)同步存量表结构,生成伪表 --fake sudo python3 manage.py makemigrations appname sudo pyt…...

239.滑动窗口最大值
leetcode原题链接 题目描述: 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例1: 输入:nums [1,…...
Redis基础原理
1 概念 1.1 关系型数据库与非关系型数据库对比 关系型数据库Mysql、Oralce特点数据之间有关联;数据存储在硬盘上效率操作关系型数据库非常耗时 非关系型数据库redis、hbase存储key:value特点数据之间没有关联关系;数据存储在内存中缓存思想从缓存中获…...
.NET 5 Web API 中JWT详细教程:保护你的Web应用
第一部分: 理解JWT JSON Web Token(JWT)是一种在不同系统之间传递信息的安全方式。它由三部分组成:头部(Header)、载荷(Payload)和签名(Signature)。头部包…...

MyBatis-Plus自动填充
文章目录 一、前言二、MyBatis-Plus自动填充功能实现2.1、实体类上增加注解2.2、自定义填充类编写 一、前言 我们在建表的时候,所有的表都会有create_id(创建人id)、create_time(创建时间)、update_id(更新…...
Dubbo服务提供者失效踢出原理解析
Dubbo服务提供者失效踢出原理解析 在分布式系统中,服务提供者的失效是一个常见而且重要的问题。Dubbo作为一款优秀的分布式服务框架,提供了失效踢出机制来及时剔除不可用的服务提供者,确保系统的稳定性和可用性。本文将深入探讨Dubbo服务提供…...
el-select下拉框处理分页数据,触底加载更多
1、声明自定义指令: directives: {loadmore: {inserted(el, binding) {const SELECTWRAP_DOM el.querySelector(.el-select-dropdown .el-select-dropdown__wrap);SELECTWRAP_DOM.addEventListener(scroll, function() {const condition this.scrollHeight - thi…...

如何设计自动化测试脚本?一文5个步骤带你从0到1设计
企业中如何设计自动化测试脚本呢?今天我们就来为大家分享一些干货。 一、线性设计 线性脚本设计方式是以脚本的方式体现测试用例,是一种非结构化的编码方式,多数采用录制回放的方式,测试工程师通过录制回访的访问对被测系统进行自…...

PostgreSQL实战-数据库迁移部署
PostgreSQL实战-数据库迁移部署 介绍 根据项目需求,我们需要将现有的PostgreSQL数据库重新部署到新的服务器上。由于项目本身就是基于PostgreSQL数据库构建的,因此数据库迁移将变得十分便捷。接下来,我将简要介绍我们的迁移步骤。 迁移步骤…...

PHP数据库
PHP MySQL 连接数据库 MySQL 简介MySQL Create 免费的 MySQL 数据库通常是通过 PHP 来使用的。 连接到一个 MySQL 数据库 在您能够访问并处理数据库中的数据之前,您必须创建到达数据库的连接。 在 PHP 中,这个任务通过 mysql_connect() 函数完成。 …...

Mybatis的基本操作--增删改查
目录 查看数据 无参数 一个参数 多个参数 添加数据 修改数据 删除数据 注释的方式进行查找数据 查看数据 分三种情况:无参,有一个参数,有多个参数的情况。 (这里的详细操作步骤是博主的上一篇博客写的:初识My…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...