当前位置: 首页 > news >正文

蓝桥杯专题-真题版含答案-【垒骰子_动态规划】【抽签】【平方怪圈】【凑算式】

  • 点击跳转专栏=>Unity3D特效百例
  • 点击跳转专栏=>案例项目实战源码
  • 点击跳转专栏=>游戏脚本-辅助自动化
  • 点击跳转专栏=>Android控件全解手册
  • 点击跳转专栏=>Scratch编程案例
  • 点击跳转=>软考全系列
  • 点击跳转=>蓝桥系列

👉关于作者

专注于Android/Unity和各种游戏开发技巧,以及各种资源分享(网站、工具、素材、源码、游戏等)
有什么需要欢迎底部卡片私我,获取更多支持,交流让学习不再孤单

芝麻粒儿-空名先生

👉实践过程

需要所有整理的文档可底部卡片联系我,直接发压缩包。

😜垒骰子_动态规划

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。

不要小看了 atm 的骰子数量哦~

「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。

「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。

「样例输入」
2 1
1 2

「样例输出」
544

#define MOD 1000000007#include <map>
#include <vector>
#include <iostream>using namespace std;long long dp[2][7];//dp[i][j]表示有i层,限定朝上的数字为j的稳定方案数
int n, m;
bool conflict[7][7];
map<int, int> op;void init() {op[1] = 4;op[4] = 1;op[2] = 5;op[5] = 2;op[3] = 6;op[6] = 3;
}int main(int argc, const char *argv[]) {init();scanf("%d %d", &n, &m);for (int i = 0; i < m; ++i) {int a, b;scanf("%d %d", &a, &b);conflict[a][b] = true;conflict[b][a] = true;}
//    输入完成for (int j = 1; j <= 6; ++j) {dp[0][j] = 1;}int cur = 0;
//    迭代层数for (int level = 2; level <= n; ++level) {cur = 1 - cur;
//     尝试将6个面放在当前一层朝上的方向for (int j = 1; j <= 6; ++j) {dp[cur][j] = 0;
//            将与op[j]不冲突的上一层格子里面的数累加起来for (int i = 1; i <= 6; ++i) {if (conflict[op[j]][i])continue;//冲突的面朝上是不可取的dp[cur][j] = (dp[cur][j] + dp[1 - cur][i]) % MOD;}}}long long sum = 0;for (int k = 1; k <= 6; ++k) {sum = (sum + dp[cur][k]) % MOD;}//    快速幂,求4的n次方long long ans = 1;long long tmp = 4;long long p = n;while (p != 0) {if (p & 1 == 1) ans = (ans * tmp) % MOD;tmp = (tmp * tmp) % MOD;p >>= 1;}printf("%d\n", (sum * ans) % MOD);return 0;
}

😜抽签

X星球要派出一个5人组成的观察团前往W星。
其中:
A国最多可以派出4人。
B国最多可以派出2人。
C国最多可以派出2人。

那么最终派往W星的观察团会有多少种国别的不同组合呢?

下面的程序解决了这个问题。
数组a[] 中是每个国家可以派出的最多的名额。
程序执行结果为:
DEFFF
CEFFF
CDFFF
CDEFF
CCFFF
CCEFF
CCDFF
CCDEF
BEFFF
BDFFF
BDEFF
BCFFF
BCEFF
BCDFF
BCDEF

(以下省略,总共101行)

#include <stdio.h>
#define N 6
#define M 5
#define BUF 1024

void f(int a[], int k, int m, char b[])
{
int i,j;

if(k==N){b[M] = 0;if(m==0) printf("%s\n",b);return;
}for(i=0; i<=a[k]; i++){for(j=0; j<i; j++) b[M-m+j] = k+'A';______________________;  //填空位置
}

}
int main()
{
int a[N] = {4,2,2,1,1,3};
char b[BUF];
f(a,0,M,b);
return 0;
}

#include <stdio.h>
#define N 6
#define M 5
#define BUF 1024
int ans;
/** k=a数组的下标,* m代表人数,初始为5* b字符串*/
void f(int a[], int k, int m, char b[])
{int i,j;if(k==N){b[M] = 0;//字符串结尾的标志if(m==0) {printf("%s\n",b);ans++;}return;}for(i=0; i<=a[k]; i++){//试着将k国家,派出i人for(j=0; j<i; j++) //填充buf,有i人就填i个国家符号(k+'A')b[M-m+j] = k+'A';
//        ______________________;  //填空位置f(a,k+1,m-i,b);}
}
int main()
{int  a[N] = {4,2,2,1,1,3};char b[BUF];f(a,0,M,b);printf("%d\n",ans);return 0;
}

😜平方怪圈

如果把一个正整数的每一位都平方后再求和,得到一个新的正整数。
对新产生的正整数再做同样的处理。

如此一来,你会发现,不管开始取的是什么数字,
最终如果不是落入1,就是落入同一个循环圈。

请写出这个循环圈中最大的那个数字。

请填写该最大数字。

#include <iostream>
#include <sstream>
using namespace std;int extract(int start){string str;stringstream ss;ss<<start;ss>>str;int ans=0;for (int i = 0; i < str.length(); ++i) {ans+=(str[i]-'0')*(str[i]-'0');}return ans;
}
int main(int argc, const char * argv[]) {int start=3;int cnt=0;while(cnt<1000){cout<<start<<endl;int  sum =extract(start);start=sum;cnt++;}return 0;
}

😜凑算式

     B      DEF
A + --- + ------- = 10C      GHI

这个算式中AI代表19的数字,不同的字母代表不同的数字。

比如:
6+8/3+952/714 就是一种解法,
5+3/1+972/486 是另一种解法。

这个算式一共有多少种解法?

#include <iostream>
#include <cmath>
using namespace std;
int a[]={1,2,3,4,5,6,7,8,9};int ans;
bool check(){int x = a[3] * 100 + a[4] * 10 + a[5];int y = a[6] * 100 + a[7] * 10 + a[8];if((a[1] * y + a[2] * x) % (y * a[2])==0 && a[0] + (a[1] * y + a[2] * x) / (y * a[2]) == 10)return true;return false;
}
/*递归回溯生成全排列,适用于无重复元素的情况* 考虑第k位,前面已经排定*/
void f(int k) {if(k==9){//一种排列已经生产if(check())ans++;}
//    从k往后的每个数字都可以放在k位for (int i = k; i < 9; ++i) {{int t=a[i];a[i]=a[k];a[k]=t;}f(k+1);//递归{int t=a[i];a[i]=a[k];a[k]=t;}//回溯}
}
int main(int argc, const char * argv[]) {
//    f(0);do{if(check())ans++;}while(next_permutation(a,a+9));cout<<ans<<endl;return 0;
}

👉其他

📢作者:小空和小芝中的小空
📢转载说明-务必注明来源:https://zhima.blog.csdn.net/
📢这位道友请留步☁️,我观你气度不凡,谈吐间隐隐有王者霸气💚,日后定有一番大作为📝!!!旁边有点赞👍收藏🌟今日传你,点了吧,未来你成功☀️,我分文不取,若不成功⚡️,也好回来找我。

温馨提示点击下方卡片获取更多意想不到的资源。
空名先生

相关文章:

蓝桥杯专题-真题版含答案-【垒骰子_动态规划】【抽签】【平方怪圈】【凑算式】

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列 &#x1f449;关于作者 专注于Android/Unity和各种游…...

kubernetes调试利器——kubectl debug工具

通常情况下&#xff0c;业务容器所使用的镜像是非常精简的&#xff0c;而一旦业务容器出现问题&#xff0c;通过kubectl exec进入到容器时&#xff0c;我们会发现自己需要使用的工具都没有&#xff0c;也无法通过apt, apt-get, yum等包管理工具下载需要的工具。 想要解决这个尴…...

浅谈es5如何保证并发请求的返回顺序

最近在公司实习写的是es5&#xff0c;在和回调地狱经过一番拉扯之后写下这篇文章&#xff0c;也算是体验了一把没有promise的时代 假设我们的div有一个日历列表&#xff0c;但是由于大小关系只能每次显示2天的信息&#xff0c;项目限制只能使用es5&#xff0c;不能使用es6的pro…...

深入浅出Pytorch函数——torch.squeeze

分类目录&#xff1a;《深入浅出Pytorch函数》总目录 相关文章&#xff1a; 深入浅出Pytorch函数——torch.squeeze 深入浅出Pytorch函数——torch.unsqueeze 将输入张量形状为1的维度去除并返回。比如输入向量的形状为 A 1 B 1 C 1 D A\times1\times B\times1\times C…...

【LeetCode】121.买卖股票的最佳时机

题目 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易中获取的最大…...

【力扣】74. 搜索二维矩阵 <二分法>

【力扣】74. 搜索二维矩阵 给你一个满足下述两条属性的 m x n 整数矩阵&#xff1a; 每行中的整数从左到右按非递减顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target &#xff0c;如果 target 在矩阵中&#xff0c;返回 true &#xff1b;否则&am…...

Spring Task+Cron表达式

不需要导入坐标spring-context&#xff08;包含在了spring-boot-starter&#xff09; 在启动类添加EnableScheduleing开启任务调度 单独建个定时任务包task&#xff0c;创建定时任务类MyTask 在定时任务类添加Component 在类的方法上添加Scheduled&#xff08;cron “cron表达…...

你们公司的【前端项目】是如何做测试的?字节10年测试经验的我这样做的...

前端项目也叫web端项目&#xff08;通俗讲就是网页上的功能&#xff09;是我们能够在屏幕上看到并产生交互的体验。 前端项目如何做测试&#xff1f; 要讲清楚这个问题&#xff0c;先需要你对测试流程现有一个全局的了解&#xff0c;先上一张测试流程图&#xff1a; 测试流程…...

华为战略方法论:BLM模型之关键任务与依赖关系

内容简介 在 BLM 模型中&#xff0c;执行部分包括四个模块&#xff0c;分别是&#xff1a; 关键任务与依赖关系&#xff1b;组织与绩效&#xff1b;人才&#xff1b;氛围与文化。 详细内容&#xff0c;大家可以参看下面这张图。 这四个模块其实是可以进一步划分成两个关键点…...

django的ORM模板的fake更新

django存量数据表的migraions记录丢失&#xff0c;若要更新表结构&#xff0c;则需用到fake&#xff0c;否则报错&#xff1a; 解决步骤如下&#xff1a; 1&#xff09;同步存量表结构&#xff0c;生成伪表 --fake sudo python3 manage.py makemigrations appname sudo pyt…...

239.滑动窗口最大值

leetcode原题链接 题目描述&#xff1a; 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例1: 输入&#xff1a;nums [1,…...

Redis基础原理

1 概念 1.1 关系型数据库与非关系型数据库对比 关系型数据库Mysql、Oralce特点数据之间有关联&#xff1b;数据存储在硬盘上效率操作关系型数据库非常耗时 非关系型数据库redis、hbase存储key:value特点数据之间没有关联关系&#xff1b;数据存储在内存中缓存思想从缓存中获…...

.NET 5 Web API 中JWT详细教程:保护你的Web应用

第一部分&#xff1a; 理解JWT JSON Web Token&#xff08;JWT&#xff09;是一种在不同系统之间传递信息的安全方式。它由三部分组成&#xff1a;头部&#xff08;Header&#xff09;、载荷&#xff08;Payload&#xff09;和签名&#xff08;Signature&#xff09;。头部包…...

MyBatis-Plus自动填充

文章目录 一、前言二、MyBatis-Plus自动填充功能实现2.1、实体类上增加注解2.2、自定义填充类编写 一、前言 我们在建表的时候&#xff0c;所有的表都会有create_id&#xff08;创建人id&#xff09;、create_time&#xff08;创建时间&#xff09;、update_id&#xff08;更新…...

Dubbo服务提供者失效踢出原理解析

Dubbo服务提供者失效踢出原理解析 在分布式系统中&#xff0c;服务提供者的失效是一个常见而且重要的问题。Dubbo作为一款优秀的分布式服务框架&#xff0c;提供了失效踢出机制来及时剔除不可用的服务提供者&#xff0c;确保系统的稳定性和可用性。本文将深入探讨Dubbo服务提供…...

el-select下拉框处理分页数据,触底加载更多

1、声明自定义指令&#xff1a; directives: {loadmore: {inserted(el, binding) {const SELECTWRAP_DOM el.querySelector(.el-select-dropdown .el-select-dropdown__wrap);SELECTWRAP_DOM.addEventListener(scroll, function() {const condition this.scrollHeight - thi…...

如何设计自动化测试脚本?一文5个步骤带你从0到1设计

企业中如何设计自动化测试脚本呢&#xff1f;今天我们就来为大家分享一些干货。 一、线性设计 线性脚本设计方式是以脚本的方式体现测试用例&#xff0c;是一种非结构化的编码方式&#xff0c;多数采用录制回放的方式&#xff0c;测试工程师通过录制回访的访问对被测系统进行自…...

PostgreSQL实战-数据库迁移部署

PostgreSQL实战-数据库迁移部署 介绍 根据项目需求&#xff0c;我们需要将现有的PostgreSQL数据库重新部署到新的服务器上。由于项目本身就是基于PostgreSQL数据库构建的&#xff0c;因此数据库迁移将变得十分便捷。接下来&#xff0c;我将简要介绍我们的迁移步骤。 迁移步骤…...

PHP数据库

PHP MySQL 连接数据库 MySQL 简介MySQL Create 免费的 MySQL 数据库通常是通过 PHP 来使用的。 连接到一个 MySQL 数据库 在您能够访问并处理数据库中的数据之前&#xff0c;您必须创建到达数据库的连接。 在 PHP 中&#xff0c;这个任务通过 mysql_connect() 函数完成。 …...

Mybatis的基本操作--增删改查

目录 查看数据 无参数 一个参数 多个参数 添加数据 修改数据 删除数据 注释的方式进行查找数据 查看数据 分三种情况&#xff1a;无参&#xff0c;有一个参数&#xff0c;有多个参数的情况。 &#xff08;这里的详细操作步骤是博主的上一篇博客写的&#xff1a;初识My…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...

TJCTF 2025

还以为是天津的。这个比较容易&#xff0c;虽然绕了点弯&#xff0c;可还是把CP AK了&#xff0c;不过我会的别人也会&#xff0c;还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)

目录 &#x1f50d; 若用递归计算每一项&#xff0c;会发生什么&#xff1f; Horners Rule&#xff08;霍纳法则&#xff09; 第一步&#xff1a;我们从最原始的泰勒公式出发 第二步&#xff1a;从形式上重新观察展开式 &#x1f31f; 第三步&#xff1a;引出霍纳法则&…...