Go 语言 sync 包使用教程
Go 语言 sync 包使用教程
Go 语言的 sync 包提供了基本的同步原语,用于在并发编程中协调 goroutine 之间的操作。
1. 互斥锁 (Mutex)
互斥锁用于保护共享资源,确保同一时间只有一个 goroutine 可以访问。
特点:
- 最基本的同步原语,实现互斥访问共享资源
- 有两个方法:
Lock()和Unlock() - 不可重入,同一个 goroutine 重复获取会导致死锁
- 没有超时机制,锁定后必须等待解锁
- 不区分读写操作,所有操作都是互斥的
- 适用于共享资源竞争不激烈的场景
- 性能高于 channel 实现的互斥机制
- 不保证公平性,可能导致饥饿问题
import ("fmt""sync""time"
)func main() {var mutex sync.Mutexcounter := 0for i := 0; i < 1000; i++ {go func() {mutex.Lock()defer mutex.Unlock()counter++}()}time.Sleep(time.Second)fmt.Println("计数器:", counter)
}
2. 读写锁 (RWMutex)
当多个 goroutine 需要读取而很少写入时,读写锁比互斥锁更高效。
特点:
- 针对读多写少场景优化的锁
- 提供四个方法:
RLock()、RUnlock()、Lock()、Unlock() - 允许多个读操作并发进行,但写操作是互斥的
- 写锁定时,所有读操作都会被阻塞
- 有读锁定时,写操作会等待所有读操作完成
- 写操作优先级较高,防止写饥饿
- 内部使用 Mutex 实现
- 比 Mutex 有更多开销,但在读多写少场景下性能更高
var rwMutex sync.RWMutex
var data map[string]string = make(map[string]string)// 读取操作
func read(key string) string {rwMutex.RLock()defer rwMutex.RUnlock()return data[key]
}// 写入操作
func write(key, value string) {rwMutex.Lock()defer rwMutex.Unlock()data[key] = value
}
3. 等待组 (WaitGroup)
等待组用于等待一组 goroutine 完成执行。
特点:
- 用于协调多个 goroutine 的完成
- 提供三个方法:
Add()、Done()、Wait() Add()增加计数器,参数可为负数Done()等同于Add(-1),减少计数器Wait()阻塞直到计数器归零- 计数器不能变为负数,会导致 panic
- 可以重用,计数器归零后可以再次增加
- 非常适合"扇出"模式(启动多个工作 goroutine 并等待全部完成)
- 不包含工作内容信息,仅表示完成状态
- 轻量级,开销很小
func main() {var wg sync.WaitGroupfor i := 0; i < 5; i++ {wg.Add(1) // 增加计数器go func(id int) {defer wg.Done() // 完成时减少计数器fmt.Printf("工作 %d 完成\n", id)}(i)}wg.Wait() // 等待所有 goroutine 完成fmt.Println("所有工作已完成")
}
4. 一次性执行 (Once)
Once 确保一个函数只执行一次,无论有多少 goroutine 尝试执行它。
特点:
- 确保某个函数只执行一次
- 只有一个方法:
Do(func()) - 即使在多个 goroutine 中调用也只执行一次
- 常用于单例模式或一次性初始化
- 内部使用互斥锁和一个标志位实现
- 非常轻量级,几乎没有性能开销
- 如果传入的函数 panic,视为已执行
- 不能重置,一旦执行就不能再次执行
- 传入不同的函数也不会再次执行
var once sync.Once
var instance *singletonfunc getInstance() *singleton {once.Do(func() {instance = &singleton{}})return instance
}
5. 条件变量 (Cond)
条件变量用于等待或宣布事件的发生。
特点:
- 用于等待或通知事件发生
- 需要与互斥锁结合使用:
sync.NewCond(&mutex) - 提供三个方法:
Wait()、Signal()、Broadcast() Wait()自动解锁并阻塞,被唤醒后自动重新获取锁Signal()唤醒一个等待的 goroutineBroadcast()唤醒所有等待的 goroutine- 适合生产者-消费者模式
- 可以避免轮询,提高性能
- 使用相对复杂,容易出错
- 等待必须在获取锁后调用
var mutex sync.Mutex
var cond = sync.NewCond(&mutex)
var ready boolfunc main() {go producer()// 消费者mutex.Lock()for !ready {cond.Wait() // 等待条件变为真}fmt.Println("数据已准备好")mutex.Unlock()
}func producer() {time.Sleep(time.Second) // 模拟工作mutex.Lock()ready = truecond.Signal() // 通知一个等待的 goroutine// 或使用 cond.Broadcast() 通知所有等待的 goroutinemutex.Unlock()
}
6. 原子操作 (atomic)
对于简单的计数器或标志,可以使用原子操作包而不是互斥锁。
特点:
- 底层的原子操作,无锁实现
- 适用于简单的计数器或标志位
- 比互斥锁性能更高,开销更小
- 提供多种原子操作:
Add、Load、Store、Swap、CompareAndSwap - 支持多种数据类型:int32、int64、uint32、uint64、uintptr 和指针
- 可用于实现自己的同步原语
- 不适合复杂的共享状态
- 在多 CPU 系统上可能导致缓存一致性开销
- Go 1.19 引入了新的原子类型
import ("fmt""sync/atomic""time"
)func main() {var counter int64 = 0for i := 0; i < 1000; i++ {go func() {atomic.AddInt64(&counter, 1)}()}time.Sleep(time.Second)fmt.Println("计数器:", atomic.LoadInt64(&counter))
}
7. Map (sync.Map)
Go 1.9 引入的线程安全的 map。
特点:
- Go 1.9 引入的线程安全的哈希表
- 无需额外加锁即可安全地并发读写
- 提供五个方法:
Store、Load、LoadOrStore、Delete、Range - 内部使用分段锁和原子操作优化性能
- 适用于读多写少的场景
- 不保证遍历的顺序
- 不支持获取元素数量或判断是否为空
- 不能像普通 map 那样直接使用下标语法
- 性能比加锁的普通 map 更好,但单线程下比普通 map 慢
- 内存开销较大
var m sync.Mapfunc main() {// 存储键值对m.Store("key1", "value1")m.Store("key2", "value2")// 获取值value, ok := m.Load("key1")if ok {fmt.Println("找到键:", value)}// 如果键不存在则存储m.LoadOrStore("key3", "value3")// 删除键m.Delete("key2")// 遍历所有键值对m.Range(func(key, value interface{}) bool {fmt.Println(key, ":", value)return true // 返回 false 停止遍历})
}
8. Pool (sync.Pool)
对象池用于重用临时对象,减少垃圾回收压力。
特点:
- 用于缓存临时对象,减少垃圾回收压力
- 提供两个方法:
Get()和Put() - 需要提供
New函数来创建新对象 - 对象可能在任何时候被垃圾回收,不保证存活
- 在 GC 发生时会清空池中的所有对象
- 不适合管理需要显式关闭的资源(如文件句柄)
- 适合于频繁创建和销毁的对象
- 没有大小限制,Put 总是成功的
- 每个 P(处理器)有自己的本地池,减少竞争
- Go 1.13 后大幅提升了性能
var bufferPool = sync.Pool{New: func() interface{} {return new(bytes.Buffer)},
}func process() {// 获取缓冲区buffer := bufferPool.Get().(*bytes.Buffer)buffer.Reset() // 清空以便重用// 使用缓冲区buffer.WriteString("hello")// 操作完成后放回池中bufferPool.Put(buffer)
}
9. 综合示例
下面是一个综合示例,展示了多个同步原语的使用:
package mainimport ("fmt""sync""time"
)type SafeCounter struct {mu sync.Mutexwg sync.WaitGroupcount int
}func main() {counter := SafeCounter{}// 启动 5 个 goroutine 增加计数器for i := 0; i < 5; i++ {counter.wg.Add(1)go func(id int) {defer counter.wg.Done()for j := 0; j < 10; j++ {counter.mu.Lock()counter.count++fmt.Printf("Goroutine %d: 计数器 = %d\n", id, counter.count)counter.mu.Unlock()// 模拟工作time.Sleep(100 * time.Millisecond)}}(i)}// 等待所有 goroutine 完成counter.wg.Wait()fmt.Println("最终计数:", counter.count)
}
最佳实践
-
使用 defer 解锁:确保即使发生错误也能解锁
mu.Lock() defer mu.Unlock() -
避免锁的嵌套:容易导致死锁
-
保持临界区简短:锁定时间越短越好
-
基准测试比较:
- 对于大多数简单操作,atomic 比 Mutex 快
- RWMutex 在读操作远多于写操作时优于 Mutex
- sync.Map 在高并发下比加锁的 map 性能更好
-
内存对齐:
- 原子操作需要内存对齐
- 不正确的内存对齐会严重影响性能
- 特别是在 32 位系统上使用 64 位原子操作
-
超时控制:
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second) defer cancel()done := make(chan struct{}) go func() {// 执行可能耗时的操作mu.Lock()// ...mu.Unlock()done <- struct{}{} }()select { case <-done:// 操作成功完成 case <-ctx.Done():// 操作超时 }
相关文章:
Go 语言 sync 包使用教程
Go 语言 sync 包使用教程 Go 语言的 sync 包提供了基本的同步原语,用于在并发编程中协调 goroutine 之间的操作。 1. 互斥锁 (Mutex) 互斥锁用于保护共享资源,确保同一时间只有一个 goroutine 可以访问。 特点: 最基本的同步原语&#x…...
约束文件SDC常用命令
约束文件SDC常用命令 定义时钟create_clock -name CLK-period 2 [get_ports_clk]告诉工具主时钟周期是2ns(频率500MHz),从clk端口输入 输入信号延迟set_input_delay 0.5 -clock CLK [get_ports data_in]数据进芯片前,外部电路已消耗0.5ns,综合要预留这段“堵车时间”。 输出…...
信而泰PFC/ECN流量测试方案:打造智能无损网络的关键利器
导语: AI算力爆发的背后,如何保障网络“零丢包”? 在当今数据中心网络中,随着AI、高性能计算(HPC)和分布式存储等应用的飞速发展,网络的无损传输能力变得至关重要。PFC(基于优先级的…...
golang不使用锁的情况下,对slice执行并发写操作,是否会有并发问题呢?
背景 并发问题最简单的解决方案加个锁,但是,加锁就会有资源争用,提高并发能力其中的一个优化方向就是减少锁的使用。 我在之前的这篇文章《开启多个协程,并行对struct中的每个元素操作,是否会引起并发问题?》中讨论过多协程场景下struct的并发问题。 Go语言中的slice在…...
Android 底部EditView输入时悬浮到软键盘上方
1. 修改 Activity 的 Manifest 配置 确保你的 Activity 在 AndroidManifest.xml 中有以下配置: <activityandroid:name".YourActivity"android:windowSoftInputMode"adjustResize|stateHidden" /> 关键点: adjustResize 是…...
CNN和LSTM的计算复杂度分析
前言:今天做边缘计算的时候,在评估模型性能的时候发现NPU计算的大部分时间都花在了LSTM上,使用的是Bi-LSTM(耗时占比98%),CNN耗时很短,不禁会思考为什么LSTM会花费这么久时间。 首先声明一下实…...
UniApp 表单校验两种方式对比:命令式与声明式
目录 前言1. 实战2. Demo 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 以下主要针对Demo讲解,从实战中的体会 何为命令式 何为声明式 命令式的体验,随时都会有提交的按钮ÿ…...
【树莓派Pico FreeRTOS】-Mutex(互斥体)
Mutex(互斥体) 文章目录 Mutex(互斥体)1、硬件准备2、软件准备3、FreeRTOS的Mutex介绍4、完整示例RP2040 由 Raspberry Pi 设计,具有双核 Arm Cortex-M0+ 处理器和 264KB 内部 RAM,并支持高达 16MB 的片外闪存。 广泛的灵活 I/O 选项包括 I2C、SPI 和独特的可编程 I/O (P…...
LCR 187. 破冰游戏(python3解法)
难度:简单 社团共有 num 位成员参与破冰游戏,编号为 0 ~ num-1。成员们按照编号顺序围绕圆桌而坐。社长抽取一个数字 target,从 0 号成员起开始计数,排在第 target 位的成员离开圆桌,且成员离开后从下一个成员开始计数…...
【漏洞修复】为了修复ARM64 Android10系统的第三方库漏洞,将ARM64 Android16的系统库直接拷贝到Android10系统如何?
直接替换系统库的风险分析 将高版本Android(如Android 16)的系统库直接拷贝到低版本系统(如Android 10)可能会导致以下问题: 符号与依赖不兼容 高版本库可能依赖更高版本的NDK或Bionic libc(Android的C库&…...
Flutter环境配置
配置环境变量 PUB_HOSTED_URLhttps://pub.flutter-io.cnFLUTTER_STORAGE_BASE_URLhttps://storage.flutter-io.cn 这个命令是用来配置 Flutter 的镜像源地址,主要是为了解决在中国大陆地区访问 Flutter 官方资源较慢的问题。 具体的操作如下: 右键点…...
centOS 7.9 65bit 修复Openssh漏洞
一、背景: 在使用centos 7.9 64bit版本操作系统时有扫描出如下的漏洞: 二、修复openssh漏洞操作 升级注意事项 (一下所有的操作默认都是root或者管理员权限,如果遇到权限问题每个指令以及指令组合都要在前面加sudo) 1、查看CentOS操作系统信…...
金融级密码管理器——生物特征密钥绑定方案
目录 金融级密码管理器 —— 生物特征密钥绑定方案一、模块概述与设计目标1.1 模块背景与意义1.2 设计目标二、系统架构设计2.1 系统模块划分2.2 系统架构图(Mermaid示意图)三、核心算法与安全原理3.1 生物特征数据预处理3.2 密钥生成算法3.3 安全认证与密钥绑定验证3.4 密钥…...
JDBC-添加数据
文章目录 准备数据库添加数据引入数据库依赖包 准备数据库 自行安装软件,利用小皮内嵌的数据 添加数据 引入数据库依赖包 结构 drivercom.mysql.cj.jdbc.Driver urljdbc:mysql://127.0.0.1:3308/yanyuuserroot passwordrootpackage com.yanyu;import java.sql.*;…...
衡石科技HENGSHI SENSE异构数据关联技术深度解析:揭秘5-8倍性能提升背后的“异构过滤“架构
引言:多源数据关联的行业痛点 在大数据时代,企业数据通常分散在多个异构系统中——关系型数据库、NoSQL、数据仓库、湖仓一体平台等。根据Forrester调研,超过78%的企业需要同时访问5种以上不同类型的数据源进行分析,但传统ETL和跨…...
基于Netlify + Localtunnel 实现本地项目“无服务器”部署上线
基于Netlify Localtunnel 实现本地项目“无服务器”部署上线 1. 先看效果图2. 实现步骤2.1 分两步走2.2 netlify 部署前端资源2.3 Localtunnel 映射 localhost 服务 3. 其它工具内网穿透工具对比4. 总结5. 参考资料 1. 先看效果图 地址:zqchat 2. 实现步骤 2.1 …...
C#从入门到精通(3)
目录 第九章 窗体 (1)From窗体 (2)MDI窗体 (3)继承窗体 第十章 控件 (1)控件常用操作 (2)Label控件 (3)Button控件 &…...
设计模式之创建型5种
设计模式 为什么设计模式是23种创建型 对象创建为什么设计模式是23种 设计模式之所以被归纳为23种,而非其他数量,源于GoF(Gang of Four)在1994年的系统性总结和分类。这一数量的确定并非偶然,而是基于以下核心原因: 他们遵循“大三律”(Rule of Three),即只有经过三个…...
Java + LangChain 实战入门,开发大语言模型应用!
在 Baeldung 上看到了一篇介绍基于 Java LangChain 开发大语言模型应用的基础入门文章,写的非常不错,非常适合初学者。于是,我抽空翻译了一下。 原文地址:https://www.baeldung.com/java-langchain-basics翻译: Java…...
el-date-picker时间范围 编辑回显后不能修改问题
el-date-picker daterange时间范围 编辑回显后不能修改 <el-form-item:label"LABELS.gplanRecordDateLabel"prop"gplanRecordDate"><el-date-pickerstyle"width: 300px"v-model"formData.gplanRecordDate"type"daterang…...
Java多线程与高并发专题—— CyclicBarrier 和 CountDownLatch 有什么异同?
引入 上一篇我们了解CountDownLatch的原理和常见用法,在CountDownLatch的源码注释中,有提到: 另一种典型用法是将一个问题分解为 N 个部分,用一个Runnable描述每个部分,该Runnable执行相应部分的任务并对闭锁进行倒计…...
leetcode543.二叉树的直径
当前顶点作为拐点时,求左子树加上右子树的高度可以求出该通过该顶点的直径大小,再对该顶点和左右子节点作为拐点时直径大小进行比对,返回最大值 缺点是递归了多次 /*** Definition for a binary tree node.* public class TreeNode {* …...
Java EE 进阶:MyBatis案例练习
表白墙 首先我们先准备一下数据库的数据 创建一个信息表 DROP TABLE IF EXISTS message_info;CREATE TABLE message_info (id INT ( 11 ) NOT NULL AUTO_INCREMENT,from VARCHAR ( 127 ) NOT NULL,to VARCHAR ( 127 ) NOT NULL,message VARCHAR ( 256 ) NOT NULL,delete_fla…...
Dubbo 全面解析:从 RPC 核心到服务治理实践
一、分布式系统与 RPC 框架概述 在当今互联网时代,随着业务规模的不断扩大,单体架构已经无法满足高并发、高可用的需求,分布式系统架构成为主流选择。而在分布式系统中,远程服务调用(Remote Procedure Call࿰…...
路由选型终极对决:直连/静态/动态三大类型+华为华三思科配置差异,一张表彻底讲透!
路由选型终极对决:直连/静态/动态三大类型华为华三思科配置差异,一张表彻底讲透! 一、路由:互联网世界的导航系统二、路由类型深度解析三者的本质区别 三、 解密路由表——网络设备的GPS华为(Huawei)华三&a…...
[微信小程序]对接sse接口
[微信小程序]对接sse接口 在uni开发中,在微信小程序中实现sse接口请求 相关连接 微信小程序对接SSE接口记录 uni中实现sse代码 注意的坑点 接收的并不是字符串,而是ArrayBuffer模拟流推送并不是流推送,会有data:字符扰乱推送并不是完全按照…...
01 相机标定与相机模型介绍
学完本文,您将了解不同相机模型分类、内参意义,及对应的应用代码模型 标定的意义 建模三维世界点投影到二维图像平面的过程。标定输出的是相机模型。 相机模型 相机模型可以解理解为投影模型 +...
【商城实战(72)】解锁用户评价与晒单功能开发秘籍
【商城实战】专栏重磅来袭!这是一份专为开发者与电商从业者打造的超详细指南。从项目基础搭建,运用 uniapp、Element Plus、SpringBoot 搭建商城框架,到用户、商品、订单等核心模块开发,再到性能优化、安全加固、多端适配…...
2025.03.27【基因分析新工具】| MAST:解锁基因表达差异分析与网络构建
文章目录 1. MAST工具简介:探索生物信息分析的新利器1.1 什么是MAST工具?1.2 MAST工具的优势1.3 MAST工具的应用场景 2. MAST的安装方法:轻松入门的第一步2.1 安装R语言环境2.2 安装MAST包2.3 安装依赖库 3. MAST常用命令:掌握数据…...
浅谈WebSocket-FLV
FLV是一种视频数据封装格式,这种封装被标准通信协议HTTP-FLV和RTMP协议应用。 而WebSocket-FLV是一种非标的FLV封装数据从后端发送到前端的一种方式。 在WebSocket的url请求中,包含了需要请求设备的视频相关信息,在视频数据到达时,…...
