当前位置: 首页 > article >正文

类和对象(下篇)(详解)

【本节目标】

1. 再谈构造函数

2. Static成员

3. 友元

4. 内部类

5. 再次理解封装

1. 再谈构造函数 

1.1 构造函数体赋值

在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。

#include <iostream>
using namespace std;
class Date
{
public:Date(int year, int month, int day){_year = year;_month = month;_day = day;}private:int _year;int _month;int _day;
};

虽然上述构造函数调用之后,对象中已经有了一个初始值,但是不能将其称为对对象中成员变量的初始化, 构造函数体中的语句只能将其称为赋初值,而不能称作初始化。因为初始化只能初始化一次,而构造函数体 内可以多次赋值。

1.2 初始化列表

初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后面跟一个放在括 号中的初始值或表达式。

class Date
{
public:Date(int year, int month, int day):_year(year), _month(month), _day(day)
{}private:int _year;int _month;int _day;};

注意: 

1. 每个成员变量在初始化列表中最多只能出现一次(初始化只能初始化一次)

2. 类中包含以下成员,必须放在初始化列表位置进行初始化:

引用成员变量

const成员变量

自定义类型成员(且该类没有默认构造函数时)

class A
{
public:A(int a):_a(a){}
private:int _a;
};
class B
{
public:
//初始化列表,对象成员定义的位置B(int a, int& ref):_aobj(a), _ref(ref), _n(10){}
private:A _aobj;// 没有默认构造函数int& _ref;// 引用const int _n; // const 
};
int main()
{int x = 1;//对象整体定义B bb(10,x);return 0;
}

为什么const 类型与引用必须在列表中初始化,因为它们有一个共同特征,必须在定义的时候初始化。而我们知道类里写成员变量的地方,写的是成员变量的声明并非定义。因此成员变量只能在列表处初始化,在函数体类的是赋值并非初始化。因为初始化只能初始化一次,而构造函数体 内可以多次赋值。

这里再回述一下默认构造函数,什么叫默认构造函数呢?不传参的都叫默认构造函数。例如编译器自己生成的,无参的,全缺省的。因此如果自定义类型没有默认构造函数时我们需要像上面一样,显示的调用自定义类型的构造函数。(也就是手动传参)

当然有默认构造函数时我们也能在初始化列表上面写,只不过如果在初始化列表上面写了,就不用缺省值了。例如下面这样,这里用的是10并非1。(但不能多次写,因为 每个成员变量在初始化列表中最多只能出现一次)

class A
{
public:A(int a=1):_a(a){}
private:int _a;
};
class B
{
public:
//初始化列表,对象成员定义的位置B(int a, int& ref):_aobj(a), _ref(ref), _n(10){}
private:A _aobj;// 没有默认构造函数int& _ref;// 引用const int _n; // const 
};
int main()
{int x = 1;//对象整体定义B bb(10,x);return 0;
}

3. 尽量使用初始化列表初始化,因为不管你是否使用初始化列表,对于自定义类型成员变量,一定会先使 用初始化列表初始化。

class Time
{
public:Time(int hour = 0):_hour(hour){cout << "Time()" << endl;}
private:int _hour;
};class Date
{
public:Date(int day){}private:int _day;Time _t;
};int main()
{Date d(1);
}

注意:1.初始化列表和函数体赋值,一般是可以相互配合着使用的。

         2.就算初始化列表上什么都没写成员变量也会走初始化列表,因为这是它定义的地方。

4. 成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表中的先后次序无关,各位可以想一下下面代码会有什么问题。

class A
{
public:A(int a):_a1(a), _a2(_a1){}void Print() {cout << _a1 << " " << _a2 << endl;}
private:int _a2;int _a1;
};int main() {A aa(1);aa.Print();
}//A.输出1  1
//B.程序崩溃
//C.编译不通过
//D.输出1  随机值

答案为D,因为编译器是按照声明的顺序初始化的,也就是这里先初始化_a2,再初始化_a1。因此在初始化列表里,用_a1来初始化_a2是错误的,_a1是随机值初始化了_a2。

因此为了防止这种错误,我们写代码时,尽量声明与定义相同顺序。

1.3 explicit关键字

构造函数不仅可以构造与初始化对象,对于接收单个参数的构造函数,还具有类型转换的作用。接收单个参 数的构造函数具体表现:

1. 构造函数只有一个参数

2. 构造函数有多个参数,除第一个参数没有默认值外,其余参数都有默认值

3. 全缺省构造函数

class Date
{
public:// 1. 单参构造函数,没有使用explicit修饰,具有类型转换作用// explicit修饰构造函数,禁止类型转换---explicit去掉之后,代码可以通过编译Date(int year):_year(year){}/*// 2. 虽然有多个参数,但是创建对象时后两个参数可以不传递,没有使用explicit修饰,具有类型转换作用// explicit修饰构造函数,禁止类型转换explicit Date(int year, int month = 1, int day = 1): _year(year), _month(month), _day(day){}*/Date& operator=(const Date& d){if (this != &d){_year = d._year;_month = d._month;_day = d._day;}return *this;}
private:int _year;int _month;int _day;
};
void Test()
{Date d1(2022);// 用一个整形变量给日期类型对象赋值// 实际编译器背后会用2023构造一个无名对象,最后用无名对象给d1对象进行赋值d1 = 2023;//这是一个隐式类型转换,整形转换成自定义类型// 将1屏蔽掉,2放开时则编译失败,因为explicit修饰构造函数,禁止了单参构造函数类型转换的作用
}
int main()
{Test();return 0;
}

上述代码可读性不是很好,用explicit修饰构造函数,将会禁止构造函数的隐式转换。

这里的隐式类型转换与不同类型的赋值十分相像,都是创建一个为左操作数的类型临时变量(这里是用右操作数的值来创建的),再把临时变量拷贝构造给左操作数。这里隐式类型转换也是一样的,2023这个值创建一个为Date类型的临时变量,再把临时变量拷贝构造给d1。

void Test()
{Date d1(2022);d1 = 2023;//这是一个隐式类型转换,整形转换成自定义类型}

现在的编译器一般都会优化这个过程,例如用2023直接构造一个日期类对象。

class Date
{
public:Date(int year):_year(year){cout << "Date(int year)" << endl;}Date(const Date& yy):_year(yy._year){cout << "Date(const Date & yy)" << endl;}Date& operator=(const Date& d){if (this != &d){_year = d._year;_month = d._month;_day = d._day;}return *this;}
private:int _year;int _month;int _day;
};
void Test()
{Date d1 = 2023;//这是一个隐式类型转换,整形转换成自定义类型}
int main()
{Test();return 0;
}

在同一个表达式上编译器一般都会优化连续构造。 

2. static成员

2.1 概念

声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用static修饰的 成员函数,称之为静态成员函数。静态成员变量一定要在类外进行初始化

面试题:实现一个类,计算程序中创建出了多少个类对象。

class A{public:A() { ++_scount; }A(const A& t) { ++_scount; }~A() { --_scount; }static int GetACount() { return _scount; }private:static int _scount;};int A::_scount = 0;void TestA(){cout << A::GetACount() << endl;A a1, a2;A a3(a1);cout << A::GetACount() << endl;}int main(){TestA();return 0;}

2.2 特性

1. 静态成员为所有类对象所共享,不属于某个具体的对象,存放在静态区

2. 静态成员变量必须在类外定义,定义时不添加static关键字,类中只是声明

3. 类静态成员即可用 类名::静态成员 或者 对象.静态成员 来访问

4. 静态成员函数没有隐藏的this指针,不能访问任何非静态成员

5. 静态成员也是类的成员,受public、protected、private 访问限定符的限制

【问题】

1. 静态成员函数可以调用非静态成员函数吗?

2. 非静态成员函数可以调用类的静态成员函数吗?

3. 友元

友元提供了一种突破封装的方式,有时提供了便利。但是友元会增加耦合度,破坏了封装,所以友元不宜多 用。

友元分为:友元函数和友元类

3.1 友元函数

问题:现在尝试去重载operator<<,,然后发现没办法将operator<<重载成成员函数。因为cout的输出流对象和隐含的this指针在抢占第一个参数的位置。this指针默认是第一个参数也就是左操作数了。但是实际使用中cout需要是第一个形参对象,才能正常使用。所以要将operator<<重载成全局函数。但又会导致类外没办法访问成员,此时就需要友元来解决。operator>>同理。

#include <iostream>
using namespace std;
class Date
{
public:Date(int year, int month, int day): _year(year), _month(month), _day(day){
}// d1 << cout; -> d1.operator<<(&d1, cout);  不符合常规调用// 因为成员函数第一个参数一定是隐藏的this,所以d1必须放在<<的左侧ostream & operator<<(ostream & _cout){_cout << _year << "-" << _month << "-" << _day << endl;return _cout;}private:int _year;int _month;int _day;
};

友元函数可以直接访问类的私有成员,它是定义在类外部的普通函数,不属于任何类,但需要在类的内部声 明,声明时需要加friend关键字。

说明:

友元函数可访问类的私有和保护成员,但不是类的成员函数

友元函数不能用const修饰

友元函数可以在类定义的任何地方声明,不受类访问限定符限制

一个函数可以是多个类的友元函数

友元函数的调用与普通函数的调用原理相同

3.2 友元类

友元类的所有成员函数都可以是另一个类的友元函数,都可以访问另一个类中的非公有成员。

 友元关系是单向的,不具有交换性。

比如上述Time类和Date类,在Time类中声明Date类为其友元类,那么可以在Date类中直接访问Time 类的私有成员变量,但想在Time类中访问Date类中私有的成员变量则不行。

友元关系不能传递

如果B是A的友元,C是B的友元,则不能说明C时A的友元。

友元关系不能继承,在继承位置再给大家详细介绍。

class Time
{
friend class Date;public:Time(int hour = 0, int minute = 0, int second = 0): _hour(hour), _minute(minute), _second(second){
}private:int _hour;int _minute;int _second;
};class Date
{
public:Date(int year = 1900, int month = 1, int day = 1): _year(year), _month(month), _day(day){}void SetTimeOfDate(int hour, int minute, int second){// 直接访问时间类私有的成员变量_t._hour = hour;_t._minute = minute;_t._second = second;}private:int _year;int _month;int _day;Time _t;
};

4. 内部类

概念:如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,它不属于外 部类,更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何优越的访问权限。

注意:内部类就是外部类的友元类,参见友元类的定义,内部类可以通过外部类的对象参数来访问外部类中 的所有成员。但是外部类不是内部类的友元。

特性:

1. 内部类可以定义在外部类的public、protected、private都是可以的。

2. 注意内部类可以直接访问外部类中的static成员,不需要外部类的对象/类名。

3. sizeof(外部类)=外部类,和内部类没有任何关系。

class A
{
private:static int k;int h;
public:class B // B天生就是A的友元{public:void foo(const A& a){cout << k << endl;//OKcout << a.h << endl;//OK}};};
int A::k = 1;int main()
{A::B b;b.foo(A());return 0;
}

如果sizeof(A)就可以发现A类只占四个字节,究其原因是k是在静态区不算在对象类,由于B类没有定义对象,因此虽然看起来在A类里,其实并不占用A类空间。因此只算h的大小。可以回顾之前所学的B类在没创建对象的时候只是起到一个图纸的效果。但是要访问B类就需要突破A类的限制,因此要用域作用限定符。如果还用了访问限定符,设为了私有那么还要突破访问限定符才能访问。

5. 再次理解类和对象

现实生活中的实体计算机并不认识,计算机只认识二进制格式的数据。如果想要让计算机认识现实生活中的 实体,用户必须通过某种面向对象的语言,对实体进行描述,然后通过编写程序,创建对象后计算机才可以 认识。比如想要让计算机认识洗衣机,就需要:

1. 用户先要对现实中洗衣机实体进行抽象---即在人为思想层面对洗衣机进行认识,洗衣机有什么属性,有 那些功能,即对洗衣机进行抽象认知的一个过程

2. 经过1之后,在人的头脑中已经对洗衣机有了一个清醒的认识,只不过此时计算机还不清楚,想要让计 算机识别人想象中的洗衣机,就需要人通过某种面相对象的语言(比如:C++、Java、Python等)将洗衣 机用类来进行描述,并输入到计算机中

3. 经过2之后,在计算机中就有了一个洗衣机类,但是洗衣机类只是站在计算机的角度对洗衣机对象进行 描述的,通过洗衣机类,可以实例化出一个个具体的洗衣机对象,此时计算机才能洗衣机是什么东西。

4. 用户就可以借助计算机中洗衣机对象,来模拟现实中的洗衣机实体了。 在类和对象阶段,大家一定要体会到,类是对某一类实体(对象)来进行描述的,描述该对象具有那些属性, 那些方法,描述完成后就形成了一种新的自定义类型,才用该自定义类型就可以实例化具体的对象。

相关文章:

类和对象(下篇)(详解)

【本节目标】 1. 再谈构造函数 2. Static成员 3. 友元 4. 内部类 5. 再次理解封装 1. 再谈构造函数 1.1 构造函数体赋值 在创建对象时&#xff0c;编译器通过调用构造函数&#xff0c;给对象中各个成员变量一个合适的初始值。 #include <iostream> using name…...

Uniapp:获取当前定位坐标

目录 一、出现场景二、具体使用 一、出现场景 在项目的开发中&#xff0c;会出现打卡、定位当前位置的功能&#xff0c;那我们如何获取当前位置呢&#xff1f;这就需要使用getLocation来获取当前位置坐标 二、具体使用 uni.getLocation({type: wgs84, // 返回可以用于uni.op…...

最大子序和问题——动态规划/贪心算法解决

目录 一&#xff1a;问题描述 二&#xff1a;解决思路1——动态规划思想 三&#xff1a;C 语言代码实现 四&#xff1a;复杂度分析 五&#xff1a;解决思路2——贪心算法思想 六&#xff1a;具体步骤 七: C语言代码实现 八&#xff1a;复杂度分析 一&#xff1a;问题描述 …...

【Unity】JSON数据的存取

这段代码的结构是为了实现 数据的封装和管理&#xff0c;特别是在 Unity 中保存和加载玩家数据时。以下是对代码设计的逐步解释&#xff1a; 1. PlayerCoin 类 PlayerCoin 是一个简单的数据类&#xff0c;用于表示单个玩家的硬币信息。它包含以下字段&#xff1a; count&…...

LeetCode【剑指offer】系列(位运算篇)

剑指offer15.二进制中1的个数 题目链接 题目&#xff1a;编写一个函数&#xff0c;输入是一个无符号整数&#xff08;以二进制串的形式&#xff09;&#xff0c;返回其二进制表达式中数字位数为 ‘1’ 的个数&#xff08;也被称为 汉明重量).&#xff09;。 思路一&#xff…...

unity socket 客户端和c#服务器通信

服务器 using BarrageGrab; using System; using System.Collections.Concurrent; using System.Linq; using System.Net; using System.Net.Sockets; using System.Text; using System.Threading;namespace Lyx {class Server{private TcpListener listener;private Concurre…...

如何在Vue中实现取消聚焦el-select——从零到部署的完整指南

如何在Vue中实现取消聚焦el-select——从零到部署的完整指南 在开发Vue项目时&#xff0c;经常会遇到需要处理用户交互和组件状态管理的情况。特别是在使用Element UI组件库时&#xff0c;如何优雅地管理组件的状态显得尤为重要。本文将详细介绍如何在取消对话框时自动取消el-s…...

网络安全领域的AI战略准备:从概念到实践

网络安全领域的AI准备不仅涉及最新工具和技术的应用&#xff0c;更是一项战略必需。许多企业若因目标不明确、数据准备不足或与业务重点脱节而未能有效利用AI技术&#xff0c;可能面临严重后果&#xff0c;包括高级网络威胁数量的激增。 AI准备的核心要素 构建稳健的网络安全…...

《重构全球贸易体系用户指南》解读

文章目录 背景核心矛盾与理论框架美元的“特里芬难题”核心矛盾目标理论框架 政策工具箱的协同运作机制关税体系的精准打击汇率政策的混合干预安全工具的复合运用 实施路径与全球秩序重构阶段性目标 风险传导与反制效应内部失衡加剧外部反制升级系统性风险 范式突破与理论再思考…...

MacOs下解决远程终端内容复制并到本地粘贴板

常常需要在服务器上捣鼓东西&#xff0c;同时需要将内容复制到本地的需求。 1-内容是在远程终端用vim打开&#xff0c;如何用vim的类似指令达到快速复制到本地呢&#xff1f; 假设待复制的内容&#xff1a; #include <iostream> #include <cstring> using names…...

基于PAI+专属网关+私网连接:构建全链路 Deepseek 云上私有化部署与模型调用架构

DeepSeek - R1 是由深度求索公司推出的首款推理模型&#xff0c;该模型在数学、代码和推理任务上的表现优异&#xff0c;市场反馈火爆。在大模型技术商业化进程中&#xff0c;企业级用户普遍面临四大核心挑战&#xff1a; 算力投入成本高昂&#xff1a;构建千亿参数级模型的训…...

【cocos creator 3.x】cocos creator2.x项目升级3.x项目改动点

1、基本改动 基本改动&#xff1a;去掉了cc.&#xff0c;改成在顶部添加导入 项目升级时候直接将cc.去掉&#xff0c;根据提示添加引用 node只保留position,scale,rotation,layer 其余属性如opacity&#xff0c;如果需要使用需要在节点手动添加UIOpacity组件 3d层和ui层分开…...

​​eBay东南亚爆单密码:72小时交付计划如何重构厦门仓+东南亚供应链?​

2024年东南亚电商市场规模预计突破2340亿美元&#xff0c;年复合增长率达18%。eBay最新战略将厦门纳入海外仓核心节点&#xff0c;推出“72小时交付计划”&#xff0c;通过“仓配转”一体化链路&#xff0c;助力中国卖家实现东南亚市场订单履约率提升10%&#xff0c;退货成本降…...

List基础与难度题

1. 向 ArrayList 中添加元素并打印 功能描述&#xff1a; 程序创建一个空的 ArrayList 集合&#xff0c;用于存储字符串类型的元素。向该 ArrayList 中依次添加指定的字符串元素。使用增强型 for 循环遍历 ArrayList 中的所有元素&#xff0c;并将每个元素打印输出到控制台。 …...

Oracle19C低版本一天遭遇两BUG(ORA-04031/ORA-600)

昨天帮朋友看一个系统异常卡顿的案例&#xff0c;在这里分享给大家 环境&#xff1a;Exadata X8M 数据库版本19.11 1.系统报错信息 表象为系统卡顿&#xff0c;页面无法刷出&#xff0c;登陆到主机上看到节点1 系统等待存在大量的 cursor: pin S wait on X等待 查看两个节…...

golang处理时间的包time一次性全面了解

本文旨在对官方time包有个全面学习了解。不钻抠细节&#xff0c;但又有全面了解&#xff0c;重点介绍常用的内容&#xff0c;一些低频的可能这辈子可能都用不上。主打一个花最少时间办最大事。 Duration对象: 两个time实例经过的时间,以长度为int64的纳秒来计数。 常见的durati…...

C++学习:六个月从基础到就业——面向对象编程:重载运算符(下)

C学习&#xff1a;六个月从基础到就业——面向对象编程&#xff1a;重载运算符&#xff08;下&#xff09; 本文是我C学习之旅系列的第十三篇技术文章&#xff0c;是面向对象编程中运算符重载主题的下篇。本篇文章将继续深入探讨高级运算符重载技术、特殊运算符、常见应用场景和…...

【网络安全】谁入侵了我的调制解调器?(二)

文章目录 针对 TR-069 协议 REST API 的攻击思路攻击百万台调制解调器意外发现 Cox 后端 API 的授权绕过漏洞确认我们能够进入任何人的设备访问和更新任何Cox商业客户账户通过泄露的加密密钥覆盖任何人的设备设置执行对任何调制解调器的命令影响最后想说阅读本文前,请先行浏览…...

【4.1.-4.20学习周报】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 摘要Abstract一、方法介绍1.1HippoRAG 1.2HippoRAG2二、实验2.1实验概况2.2实验代码2.3实验结果 总结 摘要 本博客介绍了论文《From RAG to Memory: Non-Parametri…...

MySQL 临时表介绍

在 MySQL 数据库中&#xff0c;临时表是一种特殊类型的表&#xff0c;它在数据库会话期间存在&#xff0c;会话结束时自动删除。临时表为处理特定的、临时性的数据操作任务提供了一种高效且便捷的方式。 一、临时表的创建 使用CREATE TEMPORARY TABLE语句来创建临时表。其语法…...

Rust : 关于*const () 与type erase

*const () 可以替代泛型&#xff0c;更加灵活。下面举了两个完全不一样的数据结构Foo和Bar&#xff1b;以及不同的函数&#xff0c;来说明。 一、 代码 trait Work {fn process(&self); } struct Foo(String);impl Work for Foo {fn process(&self) {println!("p…...

python学习—合并多个word文档

系列文章目录 python学习—合并TXT文本文件 python学习—统计嵌套文件夹内的文件数量并建立索引表格 python学习—查找指定目录下的指定类型文件 python学习—年会不能停&#xff0c;游戏抽签抽奖 python学习—循环语句-控制流 python学习—合并多个Excel工作簿表格文件 pytho…...

Java LinkedList深度解析:双向链表的实现艺术与实战指南

在Java集合框架中,LinkedList以其独特的双向链表结构和灵活的操作特性,成为处理动态数据的重要工具。本文将从底层实现、核心方法、性能优化到企业级应用场景,全方位解析这一经典数据结构的设计哲学与实战技巧。 一、LinkedList的设计定位与核心特性 1. 双向链表的本质 Lin…...

c#内存泄露的原因和解决办法

内存泄漏的原因 不正确的对象引用&#xff1a;最常见的原因是对象不再需要时未被垃圾回收器回收。例如&#xff0c;如果一个对象被一个不再使用的变量引用&#xff0c;它将不会被垃圾回收。事件订阅者未取消&#xff1a;如果订阅了一个事件但没有在对象不再需要时取消订阅&…...

android如何在生产环境中做到详实的日志收集而不影响性能?

在Android应用的生命周期中,日志收集贯穿于开发、测试到生产环境的每一个阶段。特别是在生产环境中,当应用部署到成千上万的用户设备上时,开发者无法直接访问用户的运行环境,也无法像在开发阶段那样通过调试工具实时查看代码执行情况。这时,日志就成为连接开发者与用户设备…...

MySQL安装实战:从零开始搭建你的数据库环境

MySQL作为全球最流行的开源关系型数据库&#xff0c;是开发者、运维人员及数据管理者的核心工具之一。本文将通过多平台安装指南、关键配置解析及常见问题排查三个维度&#xff0c;手把手带你完成MySQL环境搭建。 一、多平台安装指南 1. Linux系统&#xff08;以Ubuntu为例&am…...

[Python] UV工具入门使用指南——小试牛刀

背景 MCP开发使用到了uv&#xff0c;简单记录一下&#xff1a; 为什么MCP更推荐使用uv进行环境管理&#xff1f; MCP 依赖的 Python 环境可能包含多个模块&#xff0c;uv 通过 pyproject.toml 提供更高效的管理方式&#xff0c;并且可以避免 pip 的一些依赖冲突问题。…...

PclSharp ——pcl的c#nuget包

简介&#xff1a; NuGet Gallery | PclSharp 1.8.1.20180820-beta07 下载.NET Framework 4.5.2 Developer Pack&#xff1a; 下载 .NET Framework 4.5.2 Developer Pack Offline Installer 离线安装nupkg&#xff1a; nupkg是visual studio 的NuGet Package的一个包文件 安…...

多任务响应1(Qt)

多任务响应1 1. 架构概述2. 代码示例3. 说明 当系统的一些任务都是同一个对象产生&#xff0c;但需要交由不同对象进行响应。 比如&#xff1a;系统有多个按键&#xff0c;这些按键的共用一个槽函数&#xff0c;但不同的按键对应不同的功能响应。 推荐采用命令模式分散响应的思…...

1. k8s的简介

Kubernetes&#xff08;k8s&#xff09;简介 1. 产生背景 随着云计算和微服务架构的兴起&#xff0c;传统的单体应用逐渐被拆分为多个小型、松耦合的服务&#xff08;微服务&#xff09;。这种架构虽然提升了开发灵活性和可维护性&#xff0c;但也带来了新的挑战&#xff1a;…...