【大模型有哪些训练阶段?】
大模型(如 GPT、BERT 等)训练一般可以分为以下 三个主要阶段,每个阶段都承担着不同的职责,共同推动模型从“语言新手”成长为“多任务专家”。
🧠 一、预训练阶段(Pre-training)
📌 核心目标:
让模型学习通用语言知识和世界常识。
✅ 特点:
- 数据量巨大(TB级以上),通常来自网络、书籍、百科等;
- 无监督或自监督学习:
- BERT 使用 掩码语言模型(MLM)
- GPT 使用 自回归语言模型(Auto-regressive)
🏗️ 技术细节:
- Transformer 架构为主;
- 大批量并行训练;
- 大模型参数通常达到数十亿甚至万亿级别。
🎯 目标是:
学习语法、常识、句式结构、上下文语义等 通用能力。
🧪 二、微调阶段(Fine-tuning)
📌 核心目标:
让模型适应特定任务或领域,比如情感分析、问答、摘要、代码生成等。
✅ 特点:
- 有监督学习(带标签数据);
- 使用比预训练小得多的语料;
- 不同任务、领域会分别训练(可以多任务同时也可以单任务)。
🎯 效果:
提升模型在特定领域/任务中的精度和表现力,例如:
- 金融领域微调后擅长分析报告;
- 医疗微调后能更好理解临床对话。
👥 三、对齐与指令微调(Alignment / Instruction Tuning)
📌 核心目标:
让模型行为更加“人类对齐”,安全、守规、有用。
✅ 典型方法:
- 指令微调(Instruction Tuning):训练模型遵循“用户指令”,例如“写一个摘要”;
- 人类反馈强化学习(RLHF):
- 收集用户偏好数据(哪个回答更好)
- 用奖励模型训练一个“人喜欢的行为”策略
- 还有例如 DPO(Direct Preference Optimization)、RLAIF 等新技术替代 RLHF。
🎯 结果:
- 让模型更加 “对人友好”;
- 能对话、解释、拒绝危险请求。
🧩 附加阶段(可选)
阶段 | 描述 |
---|---|
Continual Learning(持续学习) | 保持模型随时间更新而不过时 |
Retrieval-Augmented Training(检索增强训练) | 融合外部知识库,提升时效性和精度 |
蒸馏(Distillation) | 将大模型能力压缩为小模型 |
📊 小结
阶段 | 核心任务 | 学习方式 | 数据类型 |
---|---|---|---|
预训练 | 学习语言本体 | 自监督 | 大规模无标签 |
微调 | 学习任务技能 | 有监督 | 中小规模标注数据 |
对齐 | 适应人类期望 | 人类反馈+微调 | 偏好/指令/打分数据 |
相关文章:
【大模型有哪些训练阶段?】
大模型(如 GPT、BERT 等)训练一般可以分为以下 三个主要阶段,每个阶段都承担着不同的职责,共同推动模型从“语言新手”成长为“多任务专家”。 🧠 一、预训练阶段(Pre-training) 📌…...

动手试一试 Spring Boot默认缓存管理
1.准备数据 使用之前创建的springbootdata的数据库,该数据库有两个表t_article和t_comment,这两个表预先插入几条测试数据。 2.编写数据库表对应的实体类 Entity(name "t_comment") public class Comment {IdGeneratedValue(strategy Gener…...
A2A Agent 框架结构化分析报告
A2A Agent 框架结构化分析报告 第一章 绪论 1.1 引言 在全球数字化转型的浪潮中,人工智能(Artificial Intelligence, AI)技术正以前所未有的速度改变着我们的生活和工作方式。然而,随着AI系统的广泛应用,单一AI系统…...

Opencv图像处理:旋转、打包、多图像匹配
文章目录 一、图像的旋转1、使用numpy方法实现旋转1)顺时针旋转90度2)逆时针旋转90度 2、使用opencv的方法实现图像旋转1)顺时针旋转90度2)逆时针旋转90度3)旋转180度 3、效果 二、多图像匹配1、模板2、匹配对象3、代码…...

BOM与DOM(解疑document window关系)
BOM(浏览器对象模型) 定义与作用 BOM(Browser Object Model)提供与浏览器窗口交互的接口,用于控制导航、窗口尺寸、历史记录等浏览器行为 window:浏览器窗口的顶层对象,包含全局属性和方法&am…...

数据仓库建设全解析!
目录 一、数据仓库建设的重要性 1. 整合企业数据资源 2. 支持企业决策制定 3. 提升企业竞争力 二、数据仓库建设的前期准备 1. 明确业务需求 2. 评估数据源 3. 制定项目计划 三、数据仓库建设的具体流程 1.需求分析 2.架构设计 3.数据建模 4.ETL 开发 5.…...

时序约束 记录
一、基础知识 1、fpga的约束文件为.fdc,synopsys的约束文件为.sdc。想通过fpga验证soc设计是否正确,可以通过syn工具(synplify)吃.fdc把soc code 转换成netlist。然后vivado P&R工具通过吃上述netlist、XDC 出pin脚约束、fdc时序约束三个约束来完成…...
Redis-cli常用参数及功能的详细说明
Redis-cli常用参数及功能的详细说明 相关参考知识书籍 <<Redis运维与开发>> 以下是Redis-cli常用参数及功能的详细说明 1. **-r(重复执行命令)** 作用:重复执行指定命令多次。 示例:执行3次PING命令࿱…...
第十七届山东省职业院校技能大赛 中职组网络建设与运维赛项
第十七届山东省职业院校技能大赛 中职组网络建设与运维赛项 赛题 B 卷 第十七届山东省职业院校技能大赛中职组网络建设与运维赛项 1 赛题说明 一、竞赛项目简介 “网络建设与运维”竞赛共分为以下三个模块: 网络理论测试; 网络建设与调试…...

基于SpringBoot的在线抽奖系统测试用例报告
一、项目背景 在线抽奖系统采用前后端分离的方法来实现,同时使用了数据库来存储相关的数据,redis来缓存验证码,RabbitMQ来缓存信息队列,同时将其部署到云服务器上。前端主要有登录页、后台管理页、活动列表页,抽奖页等…...
DeepSeek 部署中的常见问题及解决方案全解析
一、环境配置与依赖安装问题 1. 权限不足导致部署失败 问题现象:启动服务时提示权限错误,或无法访问文件系统。 解决方案: 账号权限:以管理员身份运行命令(Linux/macOS 使用 sudo,Windows 使用 PowerShe…...

26考研|数学分析:数项级数
数项级数这一章的开始,开启了新的关于“级数”这一新的概念体系的学习进程,此部分共包含四章的内容,分别为数项级数、函数项级数、幂级数以及傅里叶级数。这一章中,首先要掌握级数的相关概念与定义,重难点在于掌握判断…...

likeadmin前端请求地址配置踩坑
likeadmin前端本地调试执行步骤 第一步:npm i 安装项目所有依赖 第二步:npm run dev 启动 报错,发送的请求没通,很显然请求的地址不存在 第三步:查找接口请求地址 配置 根目录下有个.env.production.example 文件…...
Linux平台实现低延迟的RTSP、RTMP播放
在流媒体播放器的开发过程中,RTSP(实时流协议)和RTMP(实时消息协议)是广泛应用的流媒体协议。本博客将介绍如何使用大牛直播SDK实现一个Linux平台下的RTSP/RTMP播放器。大牛直播SDK的Linux平台播放SDK,支持…...

计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
概述 目标检测已经取得了长足的发展,尤其是随着基于 Transformer 的模型的兴起。RF-DETR,由 Roboflow 开发,就是这样一种模型,它兼顾了速度和精度。使用 Roboflow 的工具可以让整个过程变得更加轻松。他们的平台涵盖了从上传和标…...

系统思考:技术与产品协同
在《第五项修炼》中,彼得圣吉指出:组织中最根本的问题,往往不是个别人的能力,而是思维的局限和系统之间的断裂。我最近要给一家互联网公司交付系统思考的项目,客户希望技术和产品的管理者一起参加,也问我&a…...

面试之消息队列
消息队列场景 什么是消息队列? 消息队列是一个使用队列来通信的组件,它的本质就是个转发器,包含发消息、存消息、消费消息。 消息队列怎么选型? 特性ActiveMQRabbitMQRocketMQKafka单机吞吐量万级万级10万级10万级时效性毫秒级…...
大文件上传Demo及面试要点
大文件上传功能实现原理 - 面试解析 在面试中解释大文件上传功能的实现原理时,可以从以下几个方面进行说明: 1. 分片上传 (Chunked Upload) 实现原理 : 前端将大文件分割为固定大小(如5MB)的多个分片(Chunk)每个分片独立上传,…...

通过阿里云Milvus与通义千问VL大模型,快速实现多模态搜索
本文主要演示了如何使用阿里云向量检索服务Milvus版与通义千问VL大模型,提取图片特征,并使用多模态Embedding模型,快速实现多模态搜索。 基于灵积(Dashscope)模型服务上的通义千问 API以及Embedding API来接入图片、文…...

使用 Spring Boot Admin 通过图形界面查看应用配置信息的完整配置详解,包含代码示例和注释,最后以表格总结关键配置
以下是使用 Spring Boot Admin 通过图形界面查看应用配置信息的完整配置详解,包含代码示例和注释,最后以表格总结关键配置: 1. 环境准备 Spring Boot 版本:2.7.x(兼容 Spring Boot Admin 2.x)Spring Boot…...
解决NSMutableData appendData性能开销太大的问题
用以下高效方式,原理上是不复制内存: dispatch_data_t accumulatedData dispatch_data_empty; // 假设我们有多个数据块需要合并 for (NSData *chunk in dataChunks) { dispatch_data_t chunkData dispatch_data_create(chunk.bytes, chunk.length, …...
雪花算法生成int64,在前端js的精度问题
1.问题背景 后端对视频生成唯一性id,在发送评论阶段,由于后端接收的json数据格式,设置videoId为int64。前端于是使用js的Number函数,进行字符串转换为数字,由于不清楚js的精度范围,产生了携带的videoId变化…...

【计算机视觉】CV实战项目 - 基于YOLOv5与DeepSORT的智能交通监控系统:原理、实战与优化
基于YOLOv5与DeepSORT的智能交通监控系统:原理、实战与优化 一、项目架构与技术解析1.1 核心算法架构1.2 学术基础 二、实战环境配置2.1 硬件要求与系统配置2.2 分步安装指南 三、核心功能实战3.1 基础车辆计数3.2 自定义检测类别3.3 多区域计数配置 四、性能优化技…...
2025年3月电子学会青少年机器人技术(四级)等级考试试卷-实际操作-测评师
青少年机器人技术等级考试实际操作试卷(四级)-测评师 分数:100 题数:2 一、电路搭设(共1题,共20分) 1. 元器件: (1)装置中包含交通灯模块(或元器件);(2分…...

17.磁珠在EMC设计中的运用
磁珠在EMC设计中的运用 1. 磁珠的高频等效特性2. 磁珠的参数分析与选型3. 磁珠应用中的隐患问题 1. 磁珠的高频等效特性 和磁环类似,低频段感性jwL为主,高频段阻性R为主。 2. 磁珠的参数分析与选型 不需要太在意磁珠在100MHz时的电阻值,选型…...
React vs Vue:性能对决
React vs Vue:性能对决 🚀 渲染机制流程图 #mermaid-svg-LWSKliWNGUh9tZcM {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-LWSKliWNGUh9tZcM .error-icon{fill:#552222;}#mermaid-svg-LWSKliWNGUh9tZcM .error-…...

Mediamtx与FFmpeg远程与本地推拉流使用
1.本地推拉流 启服 推流 ffmpeg -re -stream_loop -1 -i ./DJI_0463.MP4 -s 1280x720 -an -c:v h264 -b:v 2000k -maxrate 2500k -minrate 1500k -bufsize 3000k -rtsp_transport tcp -f rtsp rtsp://127.0.0.1:8554/stream 拉流 ffplay -rtsp_transport tcp rtsp://43.136.…...

DPIN在AI+DePIN孟买峰会阐述全球GPU生态系统的战略愿景
DPIN基金会在3月29日于印度孟买举行的AIDePIN峰会上展示了其愿景和未来5年的具体发展计划,旨在塑造去中心化算力的未来。本次活动汇集了DPIN、QPIN、社区成员和Web3行业资深顾问,深入探讨DPIN构建全球领先的去中心化GPU算力网络的战略,该网络…...
React:<></>的存在是为了什么
1. <></> 是什么? <></> 是 React 的Fragment(片段)语法糖,等价于 <React.Fragment></React.Fragment>。 2. 它的作用 主要作用: 允许你在组件里返回多个元素,而不需…...
Android Build Variants(构建变体)详解
Android Build Variants(构建变体)是 Android 开发中用于生成不同版本应用程序的一种机制。它允许开发者根据不同的需求,如不同的应用市场、不同的功能模块、不同的环境配置等,从同一个代码库中生成多个不同的 APK。 组成部分 B…...