std::mutex底层实现原理
std::mutex是一个用于实现互斥访问的类,其具备两个成员函数——lock和unlock
锁的底层实现原理
锁的底层实现是基于原子操作的,这些原子操作是由指令支持的,因为单个指令是不能被中断的
一些与锁的实现有关的原子指令为:
待补充
互斥锁与自旋锁的区别
自旋锁
当前线程在使用获取自旋锁时,如果锁已经被其他线程持有,那么当前会一直忙等待,直到其他线程释放自旋锁。自旋锁会导致CPU时间的浪费,只适用于指令较少的临界区
互斥锁
如果临界区较长,那么使用互斥锁就不合适了,这时需要一种方法,使得当前当前线程获取锁失败时可以陷入睡眠,在锁被其他线程释放时,有机会被唤醒
在调用std::mutex 的lock函数时,如果其他线程已经持有锁,那么当前线程陷入睡眠,让出CPU资源,使得CPU可以去执行其他任务
在调用std::mutex 的unlock函数时,释放锁,同时唤醒由于调用std::mutex 的lock获取锁失败而陷入睡眠的进程
std::mutex与std::lock_guard和std::unique_lock
std::mutex通常搭配std::lock_guard/std::unique_lock使用,以便自动管理加锁、上锁操作
std::lock_guard/std::unique_lock区别在于
- std::lock_guard在性能上要稍微比std::unique_lock好一点
- std::unique_lock更加灵活,具有可以主动调用lock/unlock,而std::lock_guard在构造函数中加锁,在析构函数中解锁
- 使用条件变量时,必须用std::unique_lock
std::mutex源码实现
class mutex : private __mutex_base // 基类为__mutex
{// ...voidlock(){int __e = __gthread_mutex_lock(&_M_mutex); // _M_mutex在基类中。 实际上调用glibc c库的pthread_mutex_lock// ...}voidunlock(){__gthread_mutex_unlock(&_M_mutex);}// ...
}
class __mutex_base // mutexd的基类
{protected:typedef __gthread_mutex_t __native_type;__native_type _M_mutex = __GTHREAD_MUTEX_INIT; // 初始化宏constexpr __mutex_base() noexcept = default;// ...}
typedef pthread_mutex_t __gthread_mutex_t; // _M_mutex的原始类型就是pthread_mutex_t
#define __GTHREAD_MUTEX_INIT PTHREAD_MUTEX_INITIALIZER // 初始化宏是glibc库的初始化宏
从以上代码中可以看到,std::mutex实际上是对glibc pthread mutex实现的一层封装
pthread mutex实现与futex机制
pthread_mutex_t结构体的定义为
typedef union {struct __pthread_mutex_s {int __lock; // !< 表示是否被加锁,是否存在竞争unsigned int __count; //!< __kind代表可重入锁时,重复上锁会对__count进行递增。int __owner; //!< 持有线程的线程ID。unsigned int __nusers;int __kind; //!< 上锁类型。int __spins;__pthread_list_t __list;} __data;
} pthread_mutex_t;
pthread_mutex_t.__data._lock的值有3
-
0, 表示还没有进程/线程获得这把锁
-
1, 表示有进程/线程已经获得了这个锁
-
2, 当lock值已经为1,且又有进程/线程要获取这个锁时,将lock置为2,表示发生了竞争
需要注意的是,__data._lock是一个int整型,int类型的数据数写并不是原子的,需要使用原子操作test-and-set
或 compare-and-swap (CAS)
保证对int数据读写的原子性
pthread_mutex_t.__data._kind的是一个32位的整数,库的设计者将这个32字节分成几个部分来提通不同的分类方式
-
其中的第1到第7位,代表一个锁的类别。
-
PTHREAD_MUTEX_TIMED_NP
是mutex的默认类型,它是非递归的,这也是我之后要着重分析的锁类别。而PTHREAD_MUTEX_RECURSIVE_NP
则表示可重入锁。其他类别不展开了(能力也不够)
-
-
它的第8位表示该锁是用在进程间同步还是线程间同步,通常情况下我们在线程同步中使用mutex,此时只需要将mutex声明在全局数据段即可;但如果是进程间的同步,则需要先开辟一个共享内存,将mutex放入共享内存中,然后不同进程才能操作同一个mutex。
futex机制
glibc nptl引入了futex机制(fast userspace mutex,快速用户空间锁),futex机制是用户空间和内核空间协作完成的,futex机制根据pthread_mutex_t.__data._lock的值进行优化。
pthread mutex的底层实现依赖于futex机制
pthread_mutex_lock实现
对于PTHREAD_MUTEX_TIMED_NP类型的mutex,pthread_mutex_lock最终会调用到如下代码
#define __lll_lock(futex, private) \((void) \({ \int *__futex = (futex); \if (__glibc_unlikely \(atomic_compare_and_exchange_bool_acq (__futex, 1, 0))) \{ \if (__builtin_constant_p (private) && (private) == LLL_PRIVATE) \__lll_lock_wait_private (__futex); \else \__lll_lock_wait (__futex, private); \} \}))
这里传入的futex即pthread_mutex_t结构体中的__data._lock
atomic_compare_and_exchange_bool_acq是一个CAS操作,可以简写为 CAS(lock, new_val, old_val), 能够达成的效果是,如果old_val == lock,则将new_val赋值给lock,并将old_val返回
这里可以看到,如果__futex值为0,表示没有其他线程加锁,atomic_compare_and_exchange_bool_acq直接返回0,此次加锁操作可以直接在用户态完成,这样的话,就避免了调用系统调用函数时的压栈操作,以及由用户态和内核态之间相互切换的上下文切换操作;若__futex值不为0,则需要进一步调用__lll_lock_wait_private或者__lll_lock_wait,调用futex系统调用进行后续操作。
pthread_mutex_unlock
pthread_mutex_unlock最终会调用到如下代码
#define __lll_unlock(futex, private) \((void) \({ \int *__futex = (futex); \int __private = (private); \int __oldval = atomic_exchange_rel (__futex, 0); \if (__glibc_unlikely (__oldval > 1)) \{ \if (__builtin_constant_p (private) && (private) == LLL_PRIVATE) \__lll_lock_wake_private (__futex); \else \__lll_lock_wake (__futex, __private); \} \}))
如果__oldval==1,表示只有当前线程持有了锁(这里有一个假设是pthread_mutex_unlock是在正确的情况下使用的,即当前线程已经获取了锁),此时可以直接返回
如果__oldval>=2,表示有其他线程在这个锁上阻塞,由于当前线程释放了锁,此时需要唤醒其他调用了pthread_mutex_lock但被阻塞的线程
futex系统调用
对于futex系统调用,可以看下这篇博客性能打磨手记:记一段 Futex 机制的内核优化之旅 - 魅族内核团队
本文参考:
从C++mutex到futex - 别杀那头猪 - 博客园
相关文章:
std::mutex底层实现原理
std::mutex是一个用于实现互斥访问的类,其具备两个成员函数——lock和unlock 锁的底层实现原理 锁的底层实现是基于原子操作的,这些原子操作是由指令支持的,因为单个指令是不能被中断的 一些与锁的实现有关的原子指令为: 待补充…...

从数据结构说起(一)
1 揭开数据结构神奇的面纱 1.1 初识数据结构 在C的标准库模板(Standard Template Library,STL)课程上,我初次结识了《数据结构》。C语言提供的标准库模板是面向对象程序设计与泛型程序设计思想相结合的典范。所谓的泛型编程就是编写不依赖于具…...
【后端】构建简洁的音频转写系统:基于火山引擎ASR实现
在当今数字化时代,语音识别技术已经成为许多应用不可或缺的一部分。无论是会议记录、语音助手还是内容字幕,将语音转化为文本的能力对提升用户体验和工作效率至关重要。本文将介绍如何构建一个简洁的音频转写系统,专注于文件上传、云存储以及…...
矫平机终极指南:特殊材料处理、工艺链协同与全球供应链管理
一、特殊材料矫平:挑战与创新解决方案 1. 高温合金(如Inconel 718)处理 技术难点: 屈服强度高达1100 MPa,传统矫平力不足 高温下易氧化,需惰性气体保护环境 解决方案: 采用双伺服电机驱动&a…...
云服务器 —— 公有 IP 与 私有 IP
云服务器的 公有 IP 和 私有 IP 在网络架构中扮演不同的角色,具体用途和区别如下: 目录 1. 公有 IP(Public IP) 作用: 特点: 示例场景: 2. 私有 IP(Private IP) 作用…...

Git基本使用(很详细)
一:Git 概述 1.1 定义:分布式版本控制系统 1.2 版本控制 (1)定义: 版本控制时一种记录文件内容变化,以便将来查阅特定版本修订情况的系统 (2)举例 多副本 优化: 不使用多…...
【人工智能】基于Python和Transformers库构建高效问答系统的实践与实现**
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着自然语言处理(NLP)的发展,问答系统成为了人工智能应用中的一个重要领域。近年来,预训练模型如BERT、GPT、T5等,通过大规模数据的预…...

仓颉编程语言最佳实例 “Hello, world!”
仓颉编程语言最佳实例 “Hello, world!” The Best Practice to Cangjie Programming Language - “Hello, world!” BY JACKSON 1. 仓颉集成开发工具(IDE)安装 打开Chrome浏览器,访问仓颉编程语言官网:https://cangjie-lang.…...
【机器学习-线性回归-3】深入浅出:简单线性回归的概念、原理与实现
在机器学习的世界里,线性回归是最基础也是最常用的算法之一。作为预测分析的基石,简单线性回归为我们理解更复杂的模型提供了完美的起点。无论你是机器学习的新手还是希望巩固基础的老手,理解简单线性回归都至关重要。本文将带你全面了解简单…...

[mysql]窗口函数
目录 窗口函数: 为何要学习窗口函数,与mysql5.7实现语句对比 现在我们介绍一下窗口函数: 函数规则 1序号函数 2分布函数 3前后函数 5其他函数 总结 窗口函数: 首先数据库的迁移是非常慢的,大家学习新特性的时候要考虑自己公司的数据库版本是不是和自己学习的吻合 为何…...

内存四区(栈)
今天我再次学到了有趣的知识,内存四区! 内存四区分为代码区,全局区,栈区,堆区,今天我们详细来讲讲栈区! 内存四区和栈区都是用来存放数据的,而栈区存放的数据具体有两类 1.形参数…...

新零售行业时代:如何用科技驱动传统零售的转型升级
新零售行业时代:如何用科技驱动传统零售的转型升级 “在变化的世界中,唯一不变的是变化本身。” 一、传统零售的困局:当“生存”成为一场鏖战 街角的便利店老板老王,每天凌晨4点起床进货,却在月…...

长途骑行装备攻略:VELO维乐 Angel Revo坐垫伴我畅享旅途
工作忙碌了很久,终于迎来了一个难得的假期。我决定和朋友一起踏上一场长途骑行之旅,远离城市的喧嚣,去寻找那份久违的宁静与自由。这次旅行,不仅是为了旅途风景的放松,更是为了体验一场身体与心灵的挑战。而朋友推荐的…...
WebcamJS中文文档
文章目录 WebcamJS针对Chrome 47及以上版本的重要说明浏览器支持演示示例开源协议快速入门指南配置初始化拍摄照片自定义图像大小裁剪图像翻转图像(镜像模式)冻结/预览图像设置备用SWF文件位置重置(关闭)API 参考自定义事件向服务器提交图像跟踪上传进度包含在现有表单中自…...
用Python做有趣的AI项目1:用 TensorFlow 实现图像分类(识别猫、狗、汽车等)
项目目标 通过构建卷积神经网络(CNN),让模型学会识别图片中是什么物体。我们将使用 CIFAR-10 数据集,它包含 10 类:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。 🛠️ 开发环境与依赖 安装依赖&…...

微软官网Win10镜像下载快速获取ISO文件
如何从微软官网轻松下载win10镜像?win10镜像的下载方式主要包括两种: 目录 一:借助官方工具 二:直接微软官网通过浏览器进行下载。 三:实现方法与步骤: 1:利用微软官方提供的MediaCreationT…...
Python循环结构深度解析与高效应用实践
引言:循环结构在编程中的核心地位 循环结构作为程序设计的三大基本结构之一,在Python中通过while和for-in两种循环机制实现迭代操作。本文将从底层原理到高级应用,全面剖析Python循环机制的使用技巧与优化策略,助您掌握高效迭代的…...
springboot入门-controller层
在 Spring Boot 中,Controller 层是处理 HTTP 请求的核心组件,负责接收客户端请求、调用业务逻辑(Service 层)并返回响应。其核心原理基于 Spring MVC 框架,通过注解驱动的方式实现请求的路由和参数绑定。以下是 Contr…...
SpringBoot技术概述与应用实践
一、SpringBoot简介 SpringBoot是由Pivotal团队开发的一个基于Spring框架的开源框架,旨在简化Spring应用的开发与部署。它通过约定大于配置的理念,减少了配置复杂性,并通过内嵌式服务器的支持,使得开发者可以更方便地创建独立运行…...

逆向|dy|a_bogus|1.0.1.19-fix.01
2025-04-26 请求地址:aHR0cHM6Ly93d3cuZG91eWluLmNvbS91c2VyL01TNHdMakFCQUFBQV96azV6NkoyMG1YeGt0eHBnNkkzRVRKejlyMEs3d2Y2dU9EWlhvd2ttblZWRnB0dlBPMmMwN2J0WFotcVU4V3M 个人主页的视频数据 我们需要逆向这个接口,所以现在需要分析这个请求, 分析这几个数据包可以发现: 只有…...
golang的cgo的一点小心得
最后有个项目需要涉及到cgo,在这块以前用的不多, 这次略微用得深入了一点,记下来几点以备以后使用 本质上cgo去用的时候就是遵守一些ABI而已,总体而言,尽量避免复杂结构的来回传递。1 对于变长参数,只有…...
第三方测试机构如何保障软件质量并节省企业成本?
在软件行业,第三方测试机构扮演着极其重要的角色。他们提供独立且专业的测试服务,目的是为了保障软件的质量以及提升用户的使用体验。 专业独立 测试机构拥有经验丰富的测试员和严谨的测试流程。他们会对软件各项功能进行细致检验,力求不放…...

高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
目录 思路"情境 对象 问题"型 课题选题的类型有哪些呢?这要从课题题目的构成说起。通过对历年来国家社会科学基金立项项目进行分析,小编发现,课题选题类型非常丰富,但一般是围绕限定词、研究对象和研究问题进行不同的组…...

springboot项目配置nacos,指定使用环境
遇到这样一个问题,在开发、测试、生成环境之间切换的问题。 大多数的操作是通过修改spring.profiles.active来确定指向使用的环境配置文件,对应项目中需要增加对应的配置文件。 但是现在几乎所有公司都会有代码管理不管是SVN、git,这样就会涉…...

DIFY 浅尝 - DIFY + Ollama 添加模型
准备物料 Dify 本地部署 Ollama 下载 Open WebUI 好了现在,假设访问 http://localhost/apps 应该可以打开 Dify,设置用户登录后应该可以看到以下界面 打开 http://localhost:3000/, 你应该可以看到部署好的Open WebUI,并假设有下载好你感…...
高级 SQL 技巧:提升数据处理能力的实用方法
在数据驱动的时代,SQL 作为操作和管理关系型数据库的标准语言,其重要性不言而喻。基础的 SQL 语句能满足日常的数据查询需求,但在处理复杂业务逻辑、进行数据分析和优化数据库性能时,就需要掌握一些高级 SQL 技巧。这些技巧不仅能提高查询效率,还能实现复杂的数据处理任务…...

Java 异常处理全解析:从基础到自定义异常的实战指南
Java 异常处理全解析:从基础到自定义异常的实战指南 一、Java 异常体系:Error 与 Exception 的本质区别 1. 异常体系核心架构 Java把异常当作对象来处理,并定义一个基类java.lang.Throwable作为所有异常的超类。 在Java API中已经定义了许…...

开源AI智能名片链动2+1模式S2B2C商城小程序源码赋能下的社交电商创业者技能跃迁与价值重构
摘要:在移动互联网深度重构商业生态的背景下,社交电商创业者面临流量成本攀升、用户粘性不足、供应链协同低效等核心痛点。本文以“开源AI智能名片链动21模式S2B2C商城小程序源码”技术体系为研究对象,通过分析其技术架构、商业逻辑及实战案例…...
线程池(六):ThreadLocal相关知识详解
线程池(六):ThreadLocal相关知识详解 线程池(六):ThreadLocal相关知识详解一、概述定义与作用应用场景 二、ThreadLocal基本使用创建ThreadLocal对象设置和获取值初始化值完整示例 三、ThreadLocal的实现原…...

WSL 中 nvidia-smi: command not found的解决办法
前言 在使用基于 Linux 的 Windows 子系统(WSL)时,当我们执行某些操作后,可能会遇到输入 nvidia-smi 命令却无法被系统识别的情况。 例如,在终端中输入nvidia-smi 后,系统返回提示 -bash: nvidia-smi: co…...