当前位置: 首页 > article >正文

简单介绍C++中线性代数运算库Eigen

Eigen 是一个高性能的 C++ 模板库,专注于线性代数、矩阵和向量运算,广泛应用于科学计算、机器学习和计算机视觉等领域。以下是对 Eigen 库的详细介绍:


1. 概述

  • 核心功能:支持矩阵、向量运算,包括基本算术、矩阵分解(如 LU、QR、SVD)、几何变换(旋转、平移)等。
  • 特点
    • 表达式模板:通过延迟计算优化性能,减少临时变量。
    • 多数据类型:支持 floatdoublestd::complex 等。
    • 存储顺序:默认列优先(类似 Fortran),可选行优先(兼容 C 风格数组)。
    • 动态与静态矩阵MatrixXd(动态大小双精度)、Vector3f(固定大小 3 维单精度)等。
    • 零依赖:纯头文件实现,无需额外编译。
  • 许可证:MPL2(宽松开源协议,允许商业使用)。

2. 安装与配置

  • 安装:从 Eigen 官网 下载后,将头文件目录添加到编译器包含路径。

  • 包含头文件

    #include <Eigen/Core>      // 核心模块(Matrix、Vector)
    #include <Eigen/Dense>     // 常用模块(包含 Core、LU、QR 等)
    #include <Eigen/Geometry> // 几何变换
    

3. 基本用法

3.1 定义矩阵与向量

Eigen::MatrixXd mat(3, 3);     // 动态大小双精度矩阵
Eigen::Vector3f vec;           // 固定大小3维单精度向量
Eigen::Matrix3f mat_fixed;     // 固定大小3x3单精度矩阵

3.2 初始化

mat = Eigen::MatrixXd::Random(3, 3);  // 随机初始化
vec << 1, 2, 3;                      // 逗号初始化
mat_fixed = Eigen::Matrix3f::Identity(); // 单位矩阵

3.3 算术运算

Eigen::MatrixXd a = Eigen::MatrixXd::Random(2, 2);
Eigen::MatrixXd b = Eigen::MatrixXd::Random(2, 2);
Eigen::MatrixXd c = a + b;          // 逐元素加法
Eigen::MatrixXd d = a * b;          // 矩阵乘法
Eigen::MatrixXd e = a.transpose();  // 转置

3.4 解线性方程组

Eigen::Matrix3f A;
Eigen::Vector3f b, x;
A << 1, 2, 3, 4, 5, 6, 7, 8, 10;
b << 3, 3, 4;
x = A.lu().solve(b); // LU分解求解Ax = b

4. 高级功能

4.1 矩阵分解

// QR分解(最小二乘解)
x = A.householderQr().solve(b);
// SVD分解(奇异值分解)
Eigen::JacobiSVD<Eigen::MatrixXd> svd(A, Eigen::ComputeThinU | Eigen::ComputeThinV);

4.2 几何模块

Eigen::AngleAxisd rotation(M_PI/4, Eigen::Vector3d::UnitZ()); // Z轴旋转45度
Eigen::Vector3d point(1, 0, 0);
point = rotation * point; // 应用旋转变换

4.3 内存映射(Map类)

double data[] = {1, 2, 3, 4};
Eigen::Map<Eigen::VectorXd> vec_map(data, 4); // 将数组映射为向量

5. 性能优化

  • 表达式模板:自动合并操作(如 a = b + c + d 合并为单层循环)。
  • 固定大小矩阵:小型矩阵(如 4x4)在栈上分配,避免堆开销。
  • SIMD 优化:启用编译器选项(如 -march=native)利用 SSE/AVX 指令集。

6. 注意事项

  • 别名问题:避免操作中同时读写同一矩阵:

    // 错误写法:a = a.transpose();
    a = a.transpose().eval();        // 正确写法1
    a.transposeInPlace();             // 正确写法2
    
  • auto 陷阱:延迟计算可能导致意外结果:

    auto tmp = a * b; // tmp是表达式对象,非实际矩阵
    Eigen::MatrixXd tmp_eval = a * b; // 立即求值
    
  • 内存对齐:固定大小矩阵需注意内存对齐(使用 EIGEN_MAKE_ALIGNED_OPERATOR_NEW)。


7. 应用场景

  • 科学计算:解微分方程、优化问题。
  • 计算机视觉:三维重建、相机标定(如 OpenCV 可集成 Eigen)。
  • 机器学习:线性回归、PCA 降维。
  • 物理引擎:刚体变换、碰撞检测。

8. 对比其他库

库名特点
Armadillo语法类似 Matlab,依赖 LAPACK。
OpenCV侧重图像处理,内置矩阵但功能较局限。
BLAS/LAPACK底层标准,需手动管理内存。

Eigen 凭借其高性能、易用性和灵活性,成为 C++ 中线性代数运算的首选库之一。深入掌握其特性后,可在项目中高效实现复杂的数学运算。

相关文章:

简单介绍C++中线性代数运算库Eigen

Eigen 是一个高性能的 C 模板库&#xff0c;专注于线性代数、矩阵和向量运算&#xff0c;广泛应用于科学计算、机器学习和计算机视觉等领域。以下是对 Eigen 库的详细介绍&#xff1a; 1. 概述 核心功能&#xff1a;支持矩阵、向量运算&#xff0c;包括基本算术、矩阵分解&…...

Python爬虫实战:研究decrypt()方法解密

1. 引言 1.1 研究背景与意义 在当今数字化时代,网络数据蕴含着巨大的价值。然而,许多网站为了保护其数据安全和商业利益,会采用各种加密手段对传输的数据进行处理。这些加密措施给数据采集工作带来了巨大挑战。网络爬虫逆向解密技术应运而生,它通过分析和破解网站的加密机…...

黑马程序员C++2024版笔记 第0章 C++入门

1.C代码的基础结构 以hello_world代码为例&#xff1a; 预处理指令 #include<iostream> using namespace std; 代码前2行是预处理指令&#xff0c;即代码编译前的准备工作。&#xff08;编译是将源代码转化为可执行程序.exe文件的过程&#xff09; 主函数 主函数是…...

c#定义占用固定字节长度的结构体字段

在c中&#xff0c;经常类似这样定义结构体&#xff1a; struct DEMO_STRUCT {int a;int b;char c[128]; }; 定义这个结构体&#xff0c;占用了136个字节的内存空间&#xff0c;关键的是&#xff0c;它的内存块是连续的&#xff0c;其中c占用了128个字节 然后如果想在c#中定义…...

foxmail - foxmail 启用超大附件提示密码与帐号不匹配

foxmail 启用超大附件提示密码与帐号不匹配 问题描述 在 foxmail 客户端中&#xff0c;启用超大附件功能&#xff0c;输入了正确的账号&#xff08;邮箱&#xff09;与密码&#xff0c;但是提示密码与帐号不匹配 处理策略 找到 foxmail 客户端目录/Global 目录下的 domain.i…...

Crowdfund Insider聚焦:CertiK联创顾荣辉解析Web3.0创新与安全平衡之术

近日&#xff0c;权威金融科技媒体Crowdfund Insider发布报道&#xff0c;聚焦CertiK联合创始人兼CEO顾荣辉教授在Unchained Summit的主题演讲。报道指出&#xff0c;顾教授的观点揭示了Web3.0生态当前面临的挑战&#xff0c;以及合规与技术在推动行业可持续发展中的关键作用。…...

EDR与XDR如何选择适合您的网络安全解决方案

1. 什么是EDR&#xff1f; 端点检测与响应&#xff08;EDR&#xff09; 专注于保护端点设备&#xff08;如电脑、服务器、移动设备&#xff09;。通过在端点安装代理软件&#xff0c;EDR实时监控设备活动&#xff0c;检测威胁并快速响应。 EDR核心功能 实时监控&#xff1a;…...

PowerBI链接EXCEL实现自动化报表

PowerBI链接EXCEL实现自动化报表 曾经我将工作中一天的工作缩短至2个小时&#xff0c;其中最关键的一步就是使用PowerBI链接Excel做成一个自动化报表&#xff0c;PowerBI更新源数据&#xff0c;Excel更新报表并且保留报表格式。 以制作一个超市销售报表为例&#xff0c;简单叙…...

腾讯云MCP数据智能处理:简化数据探索与分析的全流程指南

引言 在当今数据驱动的商业环境中&#xff0c;企业面临着海量数据处理和分析的挑战。腾讯云MCP(Managed Cloud Platform)提供的数据智能处理解决方案&#xff0c;为数据科学家和分析师提供了强大的工具集&#xff0c;能够显著简化数据探索、分析流程&#xff0c;并增强数据科学…...

Android framework 中间件开发(一)

在Android开发中,经常会调用到一些系统服务,这些系统服务简化了上层应用的开发,这便是中间件的作用,中间件是介于系统和应用之间的桥梁,将复杂的底层逻辑进行一层封装,供上层APP直接调用,或者将一些APP没有权限一些操作放到中间件里面来实施. 假设一个需求,通过中间件调节系统亮…...

Lua中使用module时踩过的坑

在lua中设置某个全局对象(假如对象名为LDataUser)为nil时, LDataUser并不会变成nil, 但在有些情况下设置LDataUser nil时却真变成了nil&#xff0c;然后会导致后续再使用LDataUser时会抛nil异常, 后来发现是使用module搞的鬼&#xff0c;下面看看豆包AI给的解释&#xff0c;还…...

MATLAB中的概率分布生成:从理论到实践

MATLAB中的概率分布生成&#xff1a;从理论到实践 引言 MATLAB作为一款强大的科学计算软件&#xff0c;在统计分析、数据模拟和概率建模方面提供了丰富的功能。本文将介绍如何使用MATLAB生成各种常见的概率分布&#xff0c;包括均匀分布、正态分布、泊松分布等&#xff0c;并…...

C# 面向对象 构造函数带参无参细节解析

继承类构造时会先调用基类构造函数&#xff0c;不显式调用基类构造函数时&#xff0c;默认调用基类无参构造函数&#xff0c;但如果基类没有写无参构造函数&#xff0c;会无法调用从而报错&#xff1b;此时&#xff0c;要么显式的调用基类构造函数&#xff0c;并按其格式带上参…...

轨迹误差评估完整流程总结(使用 evo 工具)

roslaunch .launch rosbag play your_dataset.bag -r 2.0 ✅ 第二步&#xff1a;录制估计轨迹 bash 复制编辑 rosbag record -O traj_only.bag /aft_mapped_to_init 运行一段时间后 CtrlC 停止&#xff0c;生成 traj_only.bag 第三步&#xff1a;提取估计轨迹和真值轨迹为…...

Spring Boot 跨域问题全解:原理、解决方案与最佳实践

精心整理了最新的面试资料和简历模板&#xff0c;有需要的可以自行获取 点击前往百度网盘获取 点击前往夸克网盘获取 一、跨域问题的本质 1.1 什么是跨域&#xff1f; 跨域&#xff08;Cross-Origin&#xff09;问题源于浏览器的同源策略&#xff08;Same-Origin Policy&…...

vhca_id 简介,以及同 pf, vf 的关系

vhca_id 指的是 Virtual Host Channel Adapter ID&#xff08;虚拟主机通道适配器编号&#xff09;&#xff0c;它是 NVIDIA&#xff08;Mellanox&#xff09;网络设备虚拟化架构中的一个核心概念。 它与 PF&#xff08;物理功能&#xff09;、VF&#xff08;虚拟功能&#xff…...

LlamaIndex 第九篇 Indexing索引

索引概述 数据加载完成后&#xff0c;您将获得一个文档对象(Document)列表&#xff08;或节点(Node)列表&#xff09;。接下来需要为这些对象构建索引(Index)&#xff0c;以便开始执行查询。 索引&#xff08;Index&#xff09; 是一种数据结构&#xff0c;能够让我们快速检索…...

微信小程序原生swiper高度自适应图片,不同屏幕适配,正方形1:1等比例图片轮播

🤵 作者:coderYYY 🧑 个人简介:前端程序媛,目前主攻web前端,后端辅助,其他技术知识也会偶尔分享🍀欢迎和我一起交流!🚀(评论和私信一般会回!!) 👉 个人专栏推荐:《前端项目教程以及代码》 ✨一、前言分析 一开始只设了图片的mode="widthFix" st…...

在 C# 中将 DataGridView 数据导出为 CSV

在此代码示例中&#xff0c;我们将学习如何使用 C# 代码将 DataGridView 数据导出到 CSV 文件并将其保存在文件夹中。 在这个程序中&#xff0c;首先&#xff0c;我们必须连接到数据库并从中获取数据。然后&#xff0c;我们将在数据网格视图中显示该数据&#xff0c;…...

解锁 CPU 性能天花板:多维优化策略深度剖析

在数字世界的底层战场&#xff0c;CPU 如同指挥千军万马的将军&#xff0c;掌控着程序运行的节奏与效率。无论是大型服务器应用&#xff0c;还是手机端的轻量化程序&#xff0c;CPU 性能的优化都如同解锁隐藏力量的密码&#xff0c;能让程序在执行效率上实现质的飞跃。本文将深…...

Android SwitchButton 使用详解:一个实际项目的完美实践

Android SwitchButton 使用详解&#xff1a;一个实际项目的完美实践 引言 在最近开发的 Android 项目中&#xff0c;我遇到了一个需要自定义样式开关控件的需求。经过多方比较&#xff0c;最终选择了功能强大且高度可定制的 SwitchButton 控件。本文将基于实际项目中的使用案…...

Kafka如何实现高性能

Kafka如何实现高性能 Kafka之所以能成为高性能消息系统的标杆&#xff0c;是通过多层次的架构设计和优化实现的。 一、存储层优化 1. 顺序I/O设计 日志结构存储&#xff1a;所有消息追加写入&#xff0c;避免磁盘随机写分段日志&#xff1a;将日志分为多个Segment文件&…...

MySQL中表的增删改查(CRUD)

一.在表中增加数据&#xff08;Create&#xff09; INSERT [INTO] TB_NAME [(COLUMN1,COLUMN2,...)] VALUES (value_list1),(value_list2),...;into可以省略可仅选择部分列选择插入&#xff0c;column即选择的列&#xff0c; 如图例可以选择仅在valuelist中插入age和id如果不指…...

项目思维vs产品思维

大家好&#xff0c;我是大明同学。 这期内容&#xff0c;我们来聊一下项目思维和产品思维的区别。 项目是实施关键&#xff0c;力求每一步都精准到位&#xff1b;产品则是战略导向&#xff0c;确保所选之路正确无误。若缺乏优异成果&#xff0c;即便按时完成&#xff0c;也只…...

游戏引擎学习第285天:“Traversables 的事务性占用”

回顾并为当天的工作做准备 我们有一个关于玩家移动的概念&#xff0c;玩家可以在点之间移动&#xff0c;而且当这些点移动时&#xff0c;玩家会随之移动。现在这个部分基本上已经在工作了。我们本来想实现的一个功能是&#xff1a;当玩家移动到某个点时&#xff0c;这个点能“…...

基于DWT的音频水印算法

基于离散小波变换&#xff08;DWT&#xff09;的音频水印算法是一种结合信号处理与信息隐藏的技术&#xff0c;旨在将版权信息或标识隐蔽地嵌入音频信号中&#xff0c;同时保证不可感知性和鲁棒性。以下是该算法的核心步骤及关键技术点&#xff1a; ​1. 算法基本原理​ ​DWT…...

小刚说C语言刷题—1700请输出所有的2位数中,含有数字2的整数

1.题目描述 请输出所有的 2 位数中&#xff0c;含有数字 2 的整数有哪些&#xff0c;每行 1个&#xff0c;按照由小到大输出。 比如&#xff1a; 12、20、21、22、23… 都是含有数字 2的整数。 输入 无 输出 按题意要求由小到大输出符合条件的整数&#xff0c;每行 1 个。…...

文件上传Ⅲ

#文件-解析方案-执行权限&解码还原 1、执行权限 文件上传后存储目录不给执行权限&#xff08;即它并不限制你上传文件的类型&#xff0c;但不会让相应存有后门代码的PHP文件执行&#xff0c;但是PNG图片是可以访问的&#xff09; 2、解码还原 数据做存储&#xff0c;解…...

Ubuntu中配置【Rust 镜像源】

本篇主要记录Ubuntu中配置Rust编程环境时&#xff0c;所需要做的镜像源相关的配置 无法下载 Rust 工具链 通过环境变量指定 Rust 的国内镜像源&#xff08;如中科大或清华源&#xff09;。 方法一&#xff1a;临时设置镜像 export RUSTUP_DIST_SERVERhttps://mirrors.ustc.e…...

Room数据库

Room数据库 Room是Android Jetpack组件中的一款SQLite数据库抽象层框架&#xff0c;旨在简化本地数据库操作&#xff0c;提供编译时SQL校验、类型与安全、与LiveData/Flow无缝集成等特性。 1. 什么是Room 定义&#xff1a; Room 是 Android Jetpack 提供的一个 ORM&#xff…...