当前位置: 首页 > article >正文

基于CNN卷积神经网络的带频偏QPSK调制信号检测识别算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2024b

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

.......................................................................
for loop = 1:length(YTest(1, :))disp(loop); % 显示当前循环次数temp = classify(net, XTest(:,:,:,:,loop)); % 对测试数据进行分类for n = 1:length(temp)if YTest(n, loop) == 'ON'if temp(n) ~= YTest(n, loop)FDR(loop) = FDR(loop) + 1; % 误检次数加 1endcnt1 = cnt1 + 1; % ON 状态计数器加 1elseif temp(n) ~= YTest(n, loop)MDR(loop) = MDR(loop) + 1; % 漏检次数加 1endcnt2 = cnt2 + 1; % OFF 状态计数器加 1endendFDR(loop) = FDR(loop) / cnt1; % 计算误检率MDR(loop) = MDR(loop) / cnt2; % 计算漏检率ACC(loop) = 1 - sum(temp ~= YTest(:, loop)) / length(temp); % 计算准确率
endSNR = -20:2:6; % 信噪比范围% 绘制误检率和漏检率图
figure;
semilogy(SNR, FDR, 'bo-', 'LineWidth', 2); % 绘制误检率曲线
hold on;
grid on;
title('Miss & False'); % 图标题
xlabel('SNR (dB)'); % x 轴标签
ylabel('Probability'); % y 轴标签
legend('False detection ratio'); % 图例% 绘制准确率图
figure;
plot(SNR, ACC, 'bo-', 'LineWidth', 2); % 绘制准确率曲线
grid on;
xlabel('SNR (dB)'); % x 轴标签
ylabel('Total Accuracy'); % y 轴标签% 保存结果if sel==1save R1.mat FDR ACC SNR; % 保存 QPSK 的结果
end
if sel==2save R2.mat FDR ACC SNR; % 保存 QPSK 的结果
end
if sel==3save R3.mat FDR ACC SNR; % 保存 QPSK 的结果
end
217

4.算法理论概述

QPSK 调制原理:QPSK(四相相移键控)是一种常用的数字调制方式。它将输入的二进制比特流分成两路,分别进行正交调制。具体来说,设输入的二进制比特流为b(t),将其分为两路I(t)和Q(t),每路的比特速率是原比特流的一半。然后,用这两路信号分别对载波的同相分量和正交分量进行调制。数学表达式为:

      在实际通信中,由于收发两端的载波频率可能存在偏差,会导致接收到的 QPSK 信号产生频偏。设频偏为Δω,则接收到的带频偏 QPSK 信号可以表示为:

      其中n(t)是加性高斯白噪声。频偏会使 QPSK信号的相位发生线性变化,从而影响信号的检测和识别。

      卷积神经网络(CNN)在图像处理和信号处理领域有着广泛的应用。对于带频偏QPSK调制信号检测识别,CNN可以自动学习信号的特征,通过卷积层提取信号的局部特征,池化层对特征进行压缩和降维,全连接层将提取的特征进行分类。CNN能够自适应地处理频偏带来的相位变化,通过大量的训练数据学习到不同频偏下QPSK信号的特征模式,从而实现准确的检测和识别。

        将预处理后的数据分为训练集和验证集,使用训练集对 CNN 模型进行训练。在每次迭代中,将一批训练数据输入到模型中,计算损失函数并通过优化算法更新模型的参数。同时,在验证集上评估模型的性能,根据验证集的损失和准确率等指标来调整模型的超参数,如学习率、卷积核大小、层数等,直到模型收敛或达到预设的训练轮数。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于CNN卷积神经网络的带频偏QPSK调制信号检测识别算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2024b 3.部分核心程序 (完整版代码包含详细中文注释和操作步骤视频&#xff09…...

【DAY21】 常见的降维算法

内容来自浙大疏锦行python打卡训练营 浙大疏锦行 目录 PCA主成分分析 t-sne降维 线性判别分析 (Linear Discriminant Analysis, LDA) 作业: 什么时候用到降维 降维的主要应用场景 知识点回顾: PCA主成分分析t-sne降维LDA线性判别 通常情况下,…...

PostGIS实现栅格数据入库-raster2pgsql

raster2pgsql使用与最佳实践 一、工具概述 raster2pgsql是PostGIS提供的命令行工具,用于将GDAL支持的栅格格式(如GeoTIFF、JPEG、PNG等)导入PostgreSQL数据库,支持批量加载、分块切片、创建空间索引及金字塔概览,是栅格数据入库的核心工具。 二、核心功能与典型用法 1…...

校园社区小程序源码解析

基于ThinkPHP、FastAdmin和UniApp开发的校园社区小程序源码,旨在为校园内的学生和教职员工提供一个便捷的在线交流和服务平台。 该小程序前端采用UniApp进行开发,具有良好的跨平台兼容性,可以轻松发布到iOS和Android平台。同时,后…...

第6章:文件权限

一、文件权限概述 Linux为了保证系统中每个文件的安全,引入了文件权限机制。针对于系统中的每一个文件Linux都可以提供精确的权限控制。它可以做到不同的用户对同一个文件具有不同的操作权利。而通常这个权利包括以下3个: 读的权利(Read&…...

使用 Python 连接 Oracle 23ai 数据库完整指南

方法一:使用 oracledb 官方驱动(推荐) Oracle 官方维护的 oracledb 驱动(原 cx_Oracle)是最新推荐方案,支持 Thin/Thick 两种模式。 1. 环境准备 pip install oracledb2. 完整示例代码 import oracledb import getpass from typing import Unionclass Oracle23aiConn…...

C语言| 指针变量的定义

C语言| 指针的优点-CSDN博客 * 表示“指向”,为了说明指针变量和它所指向的变量之间的联系。 int * i;//表示指针变量i里面存放的地址,所指向的存储单元里的【数据】。 【指针变量的定义】 C语言规定所有变量,在使用前必须先定…...

HTML 中的 input 标签详解

HTML 中的 input 标签详解 一、基础概念 1. 定义与作用 HTML 中的 <input> 标签是表单元素的核心组件&#xff0c;用于创建各种用户输入字段。作为一个空标签&#xff08;没有闭合标签&#xff09;&#xff0c;它通过 type 属性来决定呈现何种输入控件&#xff0c;是实…...

Python 在自动驾驶数据标签中的应用:如何让 AI 读懂道路?

Python 在自动驾驶数据标签中的应用:如何让 AI 读懂道路? 在自动驾驶系统中,数据就是生命线。不管是摄像头、激光雷达还是雷达传感器,这些设备每天都能产生 海量数据,但如果这些数据没有被正确标注,它们对 AI 来说毫无意义。那么,如何让自动驾驶系统准确理解道路环境呢…...

微信小程序之按钮短时间内被多次点击问题

做项目的时候碰到这个问题&#xff0c;按钮的功能做好了&#xff0c;但是总会出现按的太快&#xff0c;出现不可预料的问题。 解决方法之一&#xff1a;借助函数节流来实现 1、创建一个工具包&#xff08;throttle.js&#xff09;,通过封装一个高阶函数&#xff0c;对函数的执…...

动态规划(3)学习方法论:构建思维模型

引言 动态规划是算法领域中一个强大而优雅的解题方法,但对于许多学习者来说,它也是最难以掌握的算法范式之一。与贪心算法或分治法等直观的算法相比,动态规划往往需要更抽象的思维和更系统的学习方法。在前两篇文章中,我们介绍了动态规划的基础概念、原理以及问题建模与状…...

两个电机由同一个控制器控制,其中一个电机发生堵转时,另一个电机的电流会变大,是发生了倒灌现象吗?电流倒灌产生的机理是什么?

当两个电机由同一个控制器驱动&#xff0c;且其中一个电机发生堵转时&#xff0c;另一个电机的电流确实可能异常增大&#xff0c;但这不一定是典型的“倒灌现象”&#xff0c;而更可能是由于共母线电压波动或能量回馈导致的。以下是具体分析&#xff1a; 1. 现象是否属于“电流…...

Java 方法向 Redis 里操作字符串有什么需要注意的?​

在 Java 开发中&#xff0c;Redis 作为高性能的键值存储数据库&#xff0c;常被用于缓存数据、处理高并发场景等。当我们使用 Java 方法向 Redis 中操作字符串类型数据时&#xff0c;有许多关键要点需要格外注意。这些要点不仅关系到代码的正确性和性能&#xff0c;还影响着整个…...

ECMAScript 2018(ES2018):异步编程与正则表达式的深度进化

1.版本背景与发布 发布时间&#xff1a;2018年6月&#xff0c;由ECMA International正式发布&#xff0c;标准编号为ECMA-262 9th Edition。历史意义&#xff1a;作为ES6之后的第三次年度更新&#xff0c;ES2018聚焦于异步编程、正则表达式和对象操作的标准化&#xff0c;推动…...

IntelliJ IDEA给Controller、Service、Mapper不同文件设置不同的文件头注释模板、Velocity模板引擎

通过在 IntelliJ IDEA 中的 “Includes” 部分添加多个文件头模板&#xff0c;并在 “Files” 模板中利用这些包含来实现不同类型文件的注释。以下是为 Controller、Service、Mapper 文件设置不同文件头的完整示例&#xff1a; 1. 设置 Includes 文件头模板 File > Settin…...

从零开始认识 Node.js:异步非阻塞的魅力

Node.js 是一个基于 Chrome V8 引擎 的 JavaScript 运行时环境&#xff0c;用于在服务器端运行 JavaScript 代码。它的设计目标是让开发者能够用 JavaScript 构建高性能、可扩展的网络应用。以下是关于 Node.js 的详细介绍&#xff1a; 1. 核心特点 事件驱动与非阻塞 I/O&…...

【C语言练习】046. 编写插入排序算法

046. 编写插入排序算法 046. 编写插入排序算法C语言实现插入排序代码说明示例运行输入:输出:插入排序的特点一、插入排序的适用场景二、C语言代码示例及分步讲解代码实现代码解析三、示例执行过程四、性能分析五、总结046. 编写插入排序算法 插入排序(Insertion Sort)是一…...

【论文阅读】BEVFormer

〇、Introduction BEVFormer是现在端到端无人驾驶中常使用的一个Backbone&#xff0c;用于将六个视角下的图像转换为鸟瞰图视角下的特征&#xff0c;转换出的BEV特征则会被用于后续模块的特征交互。然而在这个模型设计的初期&#xff0c;其最本质的意图是为了提取用于各种CV任…...

IDEA编辑器设置的导出导入

背景 最近新换了电脑&#xff0c;因为之前是 Intel 芯片的 Mac&#xff0c;这次换了 arm 架构的 M 芯片的 Mac&#xff0c;旧 Mac 上的很多软件不兼容&#xff0c;所以就没有选择换机数据迁移&#xff0c;一点一点下载、配置了所有环境。 导出 IDEA 支持设置的导入导出&…...

手动实现 Transformer 模型

本文使用 Pytorch 库手动实现了传统 Transformer 模型中的多头自注意力机制、残差连接和层归一化、前馈层、编码器、解码器等子模块&#xff0c;进而实现了对 Transformer 模型的构建。 """ Title: 解析 Transformer Time: 2025/5/10 Author: Michael Jie &quo…...

成功案例丨从草图到鞍座:用先进的发泡成型仿真技术变革鞍座制造

案例简介 在鞍座制造中&#xff0c;聚氨酯泡沫成型工艺是关键环节&#xff0c;传统依赖实验测试的方法耗时且成本高昂。为解决这一问题&#xff0c;意大利自行车鞍座制造商 Selle Royal与Altair合作&#xff0c;采用Altair Inspire PolyFoam软件进行发泡成型仿真。 该工具帮助团…...

BG开发者日志517:demo数据分析与修改方向

光明斗士玩法介绍预告片 1、试玩版开局不利 因为疏忽与经验不足&#xff0c;导致本地化出了问题&#xff0c;demo版本是以默认简体中文版的状态发布的&#xff0c; demo早就在2月就已经过审&#xff0c;当时客服并没有提出问题。后来多次传新版本&#xff0c;直接就发布了。 …...

Linux靶机网站配置:从零搭建Web靶场环境

在网络安全学习中&#xff0c;搭建靶机环境是进行渗透测试和防御技术研究的重要环节。本教程将详细介绍如何在Linux系统&#xff08;如Kali、Debian、Ubuntu等&#xff09;上配置一个基于Apache的靶机网站&#xff0c;支持HTTP/HTTPS、虚拟主机、SSL自签名证书、本地域名解析、…...

电机试验平台:创新科技推动电动机研究发展

电机试验平台是电机制造和研发过程中不可或缺的重要设备&#xff0c;其功能涵盖了电机性能测试、电机寿命测试、电机质量评估等多个方面。随着科技的不断发展和电机应用领域的日益扩大&#xff0c;对电机试验平台的要求也越来越高。本文将从现代化电机试验平台的设计与应用两个…...

STM32F103定时器1每毫秒中断一次

定时器溢出中断&#xff0c;在程序设计中经常用到。在使用TIM1和TIM8溢出中断时&#xff0c;需要注意“TIM_TimeBaseStructure.TIM_RepetitionCounter0;”&#xff0c;它表示溢出一次&#xff0c;并可以设置中断标志位。 TIM1_Interrupt_Initializtion(1000,72); //当arr1…...

【springcloud学习(dalston.sr1)】Zuul路由访问映射规则配置及使用(含源代码)(十二)

该系列项目整体介绍及源代码请参照前面写的一篇文章【springcloud学习(dalston.sr1)】项目整体介绍&#xff08;含源代码&#xff09;&#xff08;一&#xff09; springcloud学习&#xff08;dalston.sr1&#xff09;系统文章汇总如下&#xff1a; 【springcloud学习(dalston…...

Qt与Hid设备通信

什么是HID&#xff1f; HID&#xff08;Human Interface Device&#xff09;是‌直接与人交互的电子设备‌&#xff0c;通过标准化协议实现用户与计算机或其他设备的通信&#xff0c;典型代表包括键盘、鼠标、游戏手柄等。‌ 为什么HID要与qt进行通信&#xff1f; 我这里的应…...

2024 山东省ccpc省赛

目录 I&#xff08;签到&#xff09; 题目简述&#xff1a; 思路&#xff1a; 代码&#xff1a; A&#xff08;二分答案&#xff09; 题目简述&#xff1a; 思路&#xff1a; 代码&#xff1a; K&#xff08;构造&#xff09; 题目&#xff1a; 思路&#xff1a; 代…...

SAP HCM 0008数据存储逻辑

0008信息类型&#xff1a;0008信息类型是存储员工基本薪酬的地方&#xff0c;因为很多企业都会都薪酬带宽&#xff0c;都会按岗定薪&#xff0c;所以在上线前为体现工资体系的标准化&#xff0c;都会在配置对应的薪酬关系&#xff0c;HCM叫间接评估&#xff0c;今天我们就分析下…...

Elasticsearch 查询与过滤(Query vs. Filter)面试题

Elasticsearch 查询与过滤(Query vs. Filter)面试题 🚀 目录 基础概念性能优化实战应用错误排查高级场景设计题总结基础概念 🔍 面试题1:基础概念 题目: 请解释Elasticsearch中query和filter的主要区别,并说明何时应优先使用filter。 👉 查看参考答案 核心区别…...