机器学习中采样哪些事
在机器学习中采样主要分为两种,过采样(Oversample)和欠采样(Undersample)。过采样就是通过增加少数类样本的数量来平衡数据集。而欠采样就是通过减少多数类样本的数量来平衡数据集。
通常在进行采样中以下是几种常用的方法:
1. 随机采样
随机采样适用于过采样和欠采样。其操作方法就是随机复制增加少数类样本或者随机增加删除减少多数类样本。
下面是一个代码例子:
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler#创建一个不平衡的分类数据集
X, y = make_classification(n_classes=2, class_sep=2,weights=[0.1, 0.9], n_informative=3, n_redundant=1,flip_y=0,n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)df = pd.DataFrame(X)
df['target'] = y
# 查看类别分布
print("Original dataset shape:", df['target'].value_counts())# 随机过采样
ros = RandomOverSampler(random_state=42)
X_resampled_ros, y_resampled_ros = ros.fit_resample(X, y)
df_ros = pd.DataFrame(X_resampled_ros)
df_ros['target'] = y_resampled_ros
# 查看过采样后的类别分布
print("Resampled dataset shape (Oversampling):", df_ros['target'].value_counts())#随机负采样
rus = RandomUnderSampler(random_state=42)
X_resampled_rus, y_resampled_rus = rus.fit_resample(X, y)
df_rus = pd.DataFrame(X_resampled_rus)
df_rus['target'] = y_resampled_rus
print("Resampled dataset shape (Undersampling):", df_rus['target'].value_counts())
2.SMOTE
通过在少数类样本之间插值生成合成样本,通常用于过采样。
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from imblearn.over_sampling import SMOTE# 省略df
#......
# 过采样
smote = SMOTE(random_state=42)X_resampled_smote, y_resampled_smote = smote.fit_resample(X, y)
df_smote = pd.DataFrame(X_resampled_smote)
df_smote['target'] = y_resampled_smote
print("Resampled dataset shape (SMOTE):", df_smote['target'].value_counts())
3.Tomek Links
这种方法是通过删除多数类中靠近少数类的边界样本来实现欠采样。工作原理如下:
计算最近邻:对于每个样本,计算其最近邻样本。
识别 Tomek Links:如果一个多数类样本的最近邻是一个少数类样本,那么这两个样本构成一个 Tomek Link。
移除多数类样本:从数据集中移除那些构成 Tomek Link 的多数类样本。
重复上述步骤:直到没有更多的 Tomek Links
Tomek Links通过移除边界上的多数类样本,可以减少多数类样本的数量,同时尽量保留数据集的结构信息。适用于处理那些多数类样本与少数类样本紧密相连的情况。但是同时Tomek Links不能完全平衡数据集,因为移除的样本数量有限。
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from imblearn.under_sampling import TomekLinks# 初始化 TomekLinks
tomek = TomekLinks()# 欠采样
X_resampled_tomek, y_resampled_tomek = tomek.fit_resample(X, y)df_tomek = pd.DataFrame(X_resampled_tomek)
df_tomek['target'] = y_resampled_tomek
print("Resampled dataset shape (Tomek Links):", df_tomek['target'].value_counts())
4.NearMiss
NearMiss 是一种基于最近邻的欠采样方法,用于处理不平衡数据集。它的核心思想是通过移除多数类中与少数类样本距离较近的样本,或者移除多数类中距离最远的样本,从而减少多数类的样本数量。NearMiss 提供了多种策略来选择需要移除的样本。
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from imblearn.under_sampling import NearMiss# df#NearMiss 提供了三种策略:
#版本 1:移除多数类中与少数类样本距离最近的样本。
#版本 2:移除多数类中与少数类样本距离最远的样本。
#版本 3:移除多数类中距离最远的样本,但不考虑少数类样本。# 初始化 NearMiss,选择版本 1
nearmiss = NearMiss(version=1, random_state=42)X_resampled_nearmiss, y_resampled_nearmiss = nearmiss.fit_resample(X, y)df_nearmiss = pd.DataFrame(X_resampled_nearmiss)
df_nearmiss['target'] = y_resampled_nearmiss
print("Resampled dataset shape (NearMiss Version 1):", df_nearmiss['target'].value_counts())
相关文章:
机器学习中采样哪些事
在机器学习中采样主要分为两种,过采样(Oversample)和欠采样(Undersample)。过采样就是通过增加少数类样本的数量来平衡数据集。而欠采样就是通过减少多数类样本的数量来平衡数据集。 通常在进行采样中以下是几种常用的方法: 1. 随机采样 随…...

初识css,css语法怎样学好css以及常见问题与避坑
一、CSS 是什么? CSS(Cascading Style Sheets)是一种用于描述网页文档(HTML 或 XML)呈现样式的语言。它负责控制网页元素的视觉表现,如颜色、字体、布局等,使内容与展示分离。 二、CSS 语法结构…...
MySQL如何快速删除数据库中所有表数据
首先运行下面指令生成TRUNCATE TABLE语句 -- 生成的TRUNCATE TABLE语句 SELECT CONCAT(TRUNCATE TABLE , table_name, ;) FROM information_schema.tables WHERE table_schema axe_elder; 再运行下面指令禁用外键关联检查 -- 禁用外键检查 SET FOREIGN_KEY_CHECKS 0; 运…...
计算机视觉与深度学习 | Python实现ARIMA-LSTM时间序列预测(完整源码和数据)
ARIMA-LSTM混合模型 1. 环境准备2. 数据生成(示例数据)3. 数据预处理4. ARIMA建模5. LSTM残差建模6. 混合预测7. 结果可视化完整代码说明1. **数据生成**2. **ARIMA建模**3. **LSTM残差建模**4. **混合预测**5. **性能评估**参数调优建议扩展方向典型输出以下是使用Python实现…...

Axure疑难杂症:垂直菜单展开与收回(4大核心问题与专家级解决方案)
亲爱的小伙伴,在您浏览之前,烦请关注一下,在此深表感谢!如有帮助请订阅专栏! Axure产品经理精品视频课已登录CSDN可点击学习https://edu.csdn.net/course/detail/40420 课程主题:垂直菜单展开与收回 主要内容:超长菜单实现、展开与收回bug解释、Axure9版本限制等问题解…...

vue2.0 组件生命周期
个人简介 👨💻个人主页: 魔术师 📖学习方向: 主攻前端方向,正逐渐往全栈发展 🚴个人状态: 研发工程师,现效力于政务服务网事业 🇨🇳人生格言&…...
从零开始创建一个 Next.js 项目并实现一个 TodoList 示例
Next.js 是一个基于 React 的服务端渲染框架,它提供了很多开箱即用的功能,如自动路由、API 路由、静态生成、增量静态再生等。本文将带你一步步创建一个 Next.js 项目,并实现一个简单的 TodoList 功能。 效果地址 🧱 安装 Next.j…...

在Linux服务器上部署Jupyter Notebook并实现ssh无密码远程访问
Jupyter notebook版本7.4.2(这个版本AI提示我Jupyter7(底层是 jupyter_server 2.x) 服务器开启服务 安装Jupyter notebook 7.4.2成功后,终端输入 jupyter notebook --generate-config 这将在 ~/.jupyter/ 目录下生成 jupyter_…...

GPU 超级节点:AWS Trainium2 UltraServer
目录 文章目录 目录时间线Inferentia1Trainium1Inferentia2Trainium2Trainium2 ServerTrainium2 UltraServerTrainium2 UltraClustersTrainium3AWS GPU 实例矩阵与竞品分析SuperNode RackTrn2 ServerTrn2U Server ScaleUp 网络PCIe Gen5:CPU-Trainium2 ScaleUpNeuro…...
代码随想录算法训练营Day37 | 完全背包基础理论 518. 零钱兑换II 377. 组合总和Ⅳ 57. 爬楼梯(第八期模拟笔试)
完全背包基础理论 不放物品i:背包容量为j,里面不放物品i的最大价值是dp[i - 1][j]。 放物品i:背包空出物品i的容量后,背包容量为j - weight[i],dp[i][j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值…...

git仓库中.git 文件很大,怎么清理掉一部分
查询 .git 文件大小,在 git-bash 里执行(后面有些命令不能执行,也请在 git-bash 里执行) windows11 安装好后右键没有 git bash 命令-CSDN博客 du -sh .git // 592m .git 操作前最好先备份一份,避免推送到远程时出错…...

MySQL安装实战指南:Mac、Windows与Docker全平台详解
MySQL作为世界上最流行的开源关系型数据库,是每位开发者必须掌握的基础技能。本指南将手把手带你完成三大平台的MySQL安装,从下载到配置,每个步骤都配有详细说明和截图,特别适合新手学习。 一、Mac系统安装MySQL 1.1 通过Homebre…...

Rocky Linux 远程服务器画面GUI传输到本地显示教程——Xming
Rocky Linux 远程服务器画面GUI传输到本地显示教程——Xming 下载Xming安装Xming安装Xming字体Xming的使用设置测试 Xming可以提供GUI环境,在Linux服务器上执行GUI应用时,可通过Xming在Windows上执行GUI操作。 下载Xming 下载链接:https://…...
出现 org.apache.catalina.starup.HostConfig.deployDirectory 把web 应用程序部署到目录 解决方法
目录 前言1. 问题所示2. 原理分析3. 解决方法前言 爬虫神器,无代码爬取,就来:bright.cn Java基本知识: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全)【Java项目】实战CRUD的功能整理(持续更新)临近毕业,很多人问的项目都是JSP这一类,普遍都是tomca…...

游戏引擎学习第283天:“让‘Standing-on’成为一个更严谨的概念
如果同时使用多个OpenGL上下文,并且它们都有工作负载,GPU或GPU驱动程序如何决定调度这些工作?我注意到Windows似乎优先处理活动窗口的OpenGL上下文(即活动窗口表现更好),挺有意思的…… 当多个OpenGL上下文…...

React集成百度【JSAPI Three】教程(001):快速入门
文章目录 1、快速入门1.1 创建react项目1.2 安装与配置1.3 静态资源配置1.4 配置百度地图AK1.5 第一个DEMO1、快速入门 JSAPI Three版本是一套基于Three.js的三维数字孪生版本地图服务引擎,一套引擎即可支持2D、2.5D、3D全能力的地理投影与数据源加载,帮助开发者轻松搞定平面…...

python学习day2
今天主要学习了变量的数据类型,以及如何使用格式化符号进行输出。 一、认识数据类型 在python里为了应对不同的业务需求,也把数据分为不同的类型。 代码如下: """ 1、按类型将不同的变量存储在不同的类型数据 2、验证这些…...
VAPO:视觉-语言对齐预训练(对象级语义)详解
简介 多模态预训练模型(Vision-Language Pre-training, VLP)近年来取得了飞跃发展。在视觉-语言模型中,模型需要同时理解图像和文本,这要求模型学习二者之间的语义对应关系。早期方法如 VisualBERT、LXMERT 等往往使用预先提取的图像区域特征和文本词嵌入拼接输入,通过 T…...
C语言学习笔记之函数
文章目录 1、函数的基本用法2、函数的参数传递2.1 全局变量2.2 复制传递方式2.3 地址传递方式 3、函数的传参—数组4、指针函数5、递归函数和函数指针5.1 递归函数5.2 函数指针5.3 函数指针数组 1、函数的基本用法 函数是一个完成特定功能的代码模块,其程序代码独立…...
集合进阶2
Java不可变集合、Stream流与方法引用深度解析 一、不可变集合(Immutable Collections)进阶指南 1.1 不可变集合核心特性 防御性编程:防止外部修改数据(如传递集合给第三方库时)线程安全:天然支持多线程读…...
2025云上人工智能安全发展研究
随着人工智能(AI)技术与云计算的深度融合,云上AI应用场景不断扩展,但安全挑战也日益复杂。结合2025年的技术演进与行业实践,云上AI安全发展呈现以下关键趋势与应对策略: 一、云上AI安全的主要挑战 数据泄露…...

【C++】模版(1)
目录 1. 泛型编程 2. 函数模版 2.1 函数模版概念 2.2 函数模版格式 2.3 函数模版的原理 2.4 函数模版实例化方式 隐式实例化 显式实例化 2.5 模版参数的匹配原则 3. 模版类 模版类的定义格式 模版类的实例化 1. 泛型编程 如何实现一个通用的交换函数呢?…...

基于开源AI智能名片链动2+1模式S2B2C商城小程序源码的去中心化商业扩散研究
摘要:本文探讨在去中心化商业趋势下,开源AI智能名片链动21模式S2B2C商城小程序源码如何助力企业挖掘数据价值、打破信息孤岛,实现商业高效扩散。通过分析该技术组合的架构与功能,结合实际案例,揭示其在用户关系拓展、流…...

5月19日day30打卡
模块和库的导入 知识点回顾: 导入官方库的三种手段导入自定义库/模块的方式导入库/模块的核心逻辑:找到根目录(python解释器的目录和终端的目录不一致) 作业:自己新建几个不同路径文件尝试下如何导入 一、导入官方库 …...

白杨SEO:不到7天,白杨SEO博客网站百度搜索显示和排名恢复正常!顺带说说上海线下GEO聚会分享和播客红利
大家好,我是白杨SEO,专注SEO十年以上,全网SEO流量实战派,AI搜索优化研究者。 5月开始,明显就忙起来了,不管是个人陪跑还是企业顾问,不管是需要传统SEO还是新媒体流量,还是当下这个A…...
Windows软件插件-音视频捕获
下载本插件 音视频捕获就是获取电脑外接的话筒,摄像头,或线路输入的音频和视频。 本插件捕获电脑外接的音频和视频。最多可以同时获取4个视频源和4个音频源。插件可以在win32和MFC程序中使用。 使用方法 首先,加载本“捕获”DLL,…...
go 与面向对象编程(OOP)
Go 语言在设计上与传统面向对象(OOP)语言(如 Java、C)有明显差异,官方明确表示它并非纯面向对象语言。然而,它通过独特的方式实现了部分面向对象的核心特性。以下是关键分析: 1. Go 对传统 OOP…...
Mergekit——任务向量合并算法Ties解析
Mergekit——高频合并算法 TIES解析 Ties背景Ties 核心思想具体流程总结 mergekit项目地址 Mergekit提供模型合并方法可以概况为四大类:基本线性加权、基于球面插值、基于任务向量 以及一些专业化方法,今天我们来刷下基于任务向量的ties合并方法…...

Java 应用中的身份认证与授权:OAuth2.0 实现安全的身份管理
Java 应用中的身份认证与授权:OAuth2.0 实现安全的身份管理 在当今的软件开发领域,身份认证与授权是构建安全可靠应用的关键环节。而 Java 作为广泛使用的编程语言,在实现这一功能上有着诸多成熟的框架和方案。其中,OAuth2.0 凭借…...

【氮化镓】偏置对GaN HEMT 单粒子效应的影响
2025年5月19日,西安电子科技大学的Ling Lv等人在《IEEE Transactions on Electron Devices》期刊发表了题为《Single-Event Effects of AlGaN/GaN HEMTs Under Different Biases》的文章,基于实验和TCAD仿真模拟方法,研究了单粒子效应对关断状态、半开启状态和开启状态下AlG…...