当前位置: 首页 > article >正文

自训练NL-SQL模型

使用T5小模型在笔记本上训练 nature language to SQL/自然语言 转SQL
实测通过。

本文介绍了如何在笔记本上使用T5小模型训练自然语言转SQL的任务。主要内容包括:1) 创建Python 3.9环境并安装必要的依赖包;2) 通过Hugging Face镜像下载wikisql数据集和T5-small模型;3) 实现数据预处理函数,将自然语言问题转换为SQL查询语句;4) 优化训练过程,包括截断条件和批量处理以提高内存效率。实验表明,该方法在有限计算资源下可行,适合个人开发者和小规模项目尝试。

##############################################

创建环境 建议用python3.9

##############################################

#list all conda environment
conda env list

#deactive 现有环境
conda deactivate
conda remove --name py312_test --all

#创建一个新环境
conda create -n py39_test python=3.9
conda activate py39_test

#requirment.txt 见文章最下方

##############################################

开始安装

##############################################
#pip
pip install torch transformers pandas datasets

#curl
curl -I https://hf-mirror.com/datasets/Salesforce/wikisql

先尝试从wiki下载SQL set

import os
os.environ[“HF_ENDPOINT”] = “https://hf-mirror.com”

from datasets import load_dataset

指定版本(如 “refs/convert/parquet” 是官方维护的稳定分支)

dataset = load_dataset(
“Salesforce/wikisql”,
trust_remote_code=True,
revision=“refs/convert/parquet”
) # dataset 保存在 C:\Users\ASUS.cache\huggingface\datasets
print(dataset[“train”][0]) # 查看数据结构

install torch

pip uninstall numpy -y
pip install numpy1.26.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torch
2.1.0 --extra-index-url https://download.pytorch.org/whl/cpu -i https://pypi.tuna.tsinghua.edu.cn/simple

import numpy as np
print(f"NumPy 版本: {np.version}“) # 应输出 1.26.0
import torch
print(f"PyTorch 版本: {torch.version}”) # 输出 2.1.0+cpu
print(f"是否为 CPU 版本: {not torch.cuda.is_available()}") # 输出 True(无 GPU 时)

#install sentencepiece
pip install sentence

相关文章:

自训练NL-SQL模型

使用T5小模型在笔记本上训练 nature language to SQL/自然语言 转SQL 实测通过。 本文介绍了如何在笔记本上使用T5小模型训练自然语言转SQL的任务。主要内容包括:1) 创建Python 3.9环境并安装必要的依赖包;2) 通过Hugging Face镜像下载wikisql数据集和T5-small模型;3) 实现…...

创新点!贝叶斯优化、CNN与LSTM结合,实现更准预测、更快效率、更高性能!

能源与环境领域的时空数据预测面临特征解析与参数调优双重挑战。CNN-LSTM成为突破口:CNN提取空间特征,LSTM捕捉时序依赖,实现时空数据的深度建模。但混合模型超参数(如卷积核数、LSTM层数)调优复杂,传统方法…...

【Flutter】创建BMI计算器应用并添加依赖和打包

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍创建BMI计算器应用并添加依赖和打包。 学其所用,用其所学。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下,下…...

【Linux 学习计划】-- 倒计时、进度条小程序

目录 \r 、\n、fflush 倒计时 进度条 进度条进阶版 结语 \r 、\n、fflush 首先我们先来认识这三个东西,这将会是我们接下来两个小程序的重点之一 首先是我们的老演员\n,也就是回车加换行 这里面其实包含了两个操作,一个叫做回车&…...

微服务的应用案例

从“菜市场”到“智慧超市”:一场微服务的变革之旅 曾经,我们的系统像一个熙熙攘攘的传统菜市场。所有功能模块(摊贩)都挤在一个巨大的单体应用中。用户请求(买菜的顾客)一多,整个市场就拥堵不堪…...

后端开发概念

1. 后端开发概念解析 1.1. 什么是服务器,后端服务 1.1.1. 服务器 服务器是一种提供服务的计算机系统,它可以接收、处理和响应来自其他计算机系统(客户端)的请求。服务器主要用于存储、处理和传输数据,以便客户端可以…...

2025网络安全趋势报告 内容摘要

2025 年网络安全在技术、法规、行业等多个维度呈现新趋势。技术上,人工智能、隐私保护技术、区块链、量子安全技术等取得进展;法规方面,数据安全法规进一步细化;行业应用中,物联网、工业控制系统安全升级,供…...

云原生安全基石:深度解析HTTPS协议(从原理到实战)

🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念:HTTPS是什么? HTTPS(HyperText Transfer Protocol Secure)是HTTP协议的安全版本&#xff0c…...

Autodl训练Faster-RCNN网络--自己的数据集(一)

参考文章: Autodl服务器中Faster-rcnn(jwyang)复现(一)_autodl faster rcnn-CSDN博客 Autodl服务器中Faster-rcnn(jwyang)训练自己数据集(二)_faster rcnn autodl-CSDN博客 食用指南:先跟着参考文章一进行操作,遇到问题再来看我这里有没有解…...

python打卡day36

复习日 仔细回顾一下神经网络到目前的内容,没跟上进度的补一下进度 作业:对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。探索性作业(随意完成):尝试进入nn.M…...

8.Java 8 日期时间处理:从 Date 的崩溃到 LocalDate 的优雅自救​

一、被 Date 逼疯的程序员:那些年踩过的坑​ 还记得刚学 Java 时被Date支配的恐惧吗?​ 想获取 "2023 年 10 月 1 日"?new Date(2023, 9, 1)—— 等等,为什么月份是 9?哦对,Java 的月份从 0 开…...

基于Python的全卷积网络(FCN)实现路径损耗预测

以下是一份详细的基于Python的全卷积网络(FCN)实现路径损耗预测的技术文档。本方案包含理论基础、数据生成、模型构建、训练优化及可视化分析,代码实现约6000字。 基于全卷积网络的无线信道路径损耗预测系统 目录 问题背景与需求分析系统架构设计合成数据生成方法全卷积网络…...

【ubuntu】安装NVIDIA Container Toolkit

目录 安装NVIDIA Container Toolkit 安装依赖 添加密钥和仓库 配置中国科技大学(USTC) 镜像 APT 源 更新 APT 包列表 安装 NVIDIA Container Toolkit 验证安装 重启docker 起容器示例命令 【问题】如何在docker中正确使用GPU? 安装…...

Paimon和Hive相集成

Flink版本1.17 Hive版本3.1.3 1、Paimon集成Hive 将paimon-hive-connector.jar复制到auxlib中,下载链接Index of /groups/snapshots/org/apache/https://repository.apache.org/snapshots/org/apache/paimon/ 通过flink进入查看paimon /opt/softwares/flink-1.…...

精益数据分析(74/126):从愿景到落地的精益开发路径——Rally的全流程管理实践

精益数据分析(74/126):从愿景到落地的精益开发路径——Rally的全流程管理实践 在创业的黏性阶段,如何将抽象的愿景转化为可落地的产品功能?如何在快速迭代中保持战略聚焦?今天,我们通过Rally软…...

HarmonyOS 鸿蒙应用开发进阶:深入理解鸿蒙跨设备互通机制

鸿蒙跨设备互通(HarmonyOS Cross-Device Collaboration)是鸿蒙系统分布式能力的重要体现,通过创新的分布式软总线技术,实现了设备间的高效互联与能力共享。本文将系统性地解析鸿蒙跨设备互通的技术架构、实现原理及开发实践。 跨设…...

Vue.js教学第十五章:深入解析Webpack与Vue项目实战

Webpack 与 Vue 项目详解 在现代前端开发中,Webpack 作为最流行的模块打包工具之一,对于 Vue 项目的构建和优化起着至关重要的作用。本文将深入剖析 Webpack 的基本概念、在 Vue 项目中的应用场景,并详细讲解常用的 Webpack loaders 和 plugins 的配置与作用,同时通过实例…...

深入浅出 Python Testcontainers:用容器优雅地编写集成测试

在现代软件开发中,自动化测试已成为敏捷开发与持续集成中的关键环节。单元测试可以快速验证函数或类的行为是否符合预期,而集成测试则确保多个模块协同工作时依然正确。问题是:如何让集成测试可靠、可重复且易于维护? 这时&#…...

Cmake编译gflags过程记录和在QT中测试

由于在QT中使用PaddleOCR2.8存在这样那样的问题,查找貌似是gflags相关问题导致的,因此从头开始按相关参考文章编译一遍gflags源码,测试结果表明Qt5.14.2中使用MSVC2017X64编译器运行的QTgflags项目是正常。 详细编译步骤如下: 1、…...

项目中Warmup耗时高该如何操作处理

1)项目中Warmup耗时高该如何操作处理 2)如何在卸载资源后Untracked和Other的内存都回收 3)总Triangles的值是否包含了通过GPU Instancing画的三角形 4)有没有用Lua来修复虚幻引擎中对C代码进行插桩Hook的方案 这是第432篇UWA技术知…...

制作一款打飞机游戏53:子弹样式

现在,我们有一个小程序可以发射子弹,但这些子弹并不完美,我们稍后会修复它们。 子弹模式与目标 在开始之前,我想修正一下,因为我观察到在其他射击游戏中有一个我想复制的简单行为。我们有静态射击、瞄准射击和快速射击…...

Windows磁盘无法格式化及磁盘管理

简述:D盘使用了虚拟分区,结果导致无法格式化。 一、无法格式化磁盘 因为以前划分C盘的时候,空间划小了,所以在下载一些程序的依赖包之后爆红。当我想要把D盘的空间分给C盘时,发现D盘无法格式化。在网上没有找到合适的…...

每日算法 -【Swift 算法】Z 字形变换(Zigzag Conversion)详解与实现

Swift | Z 字形变换(Zigzag Conversion)详解与实现 🧩 题目描述 给定一个字符串 s 和一个行数 numRows,请按照从上往下、再从下往上的“Z”字形排列这个字符串,并按行输出最终结果。例如: 输入&#xff…...

Docker运维-5.3 配置私有仓库(Harbor)

1. harbor的介绍 Harbor(港湾),是一个用于存储和分发 Docker 镜像的企业级 Registry 服务器。以前的镜像私有仓库采用官方的 Docker Registry,不便于管理镜像。 Harbor 是由 VMWare 在 Docker Registry 的基础之上进行了二次封装,加进去了很…...

day 36

利用前面所学知识,对之前的信贷项目,利用神经网络训练 # 先运行之前预处理好的代码 import pandas as pd import pandas as pd #用于数据处理和分析,可处理表格数据。 import numpy as np #用于数值计算,提供了高效的数组…...

mybatis-plus使用记录

MyBatis-Plus 学习笔记 一、 快速入门 MyBatis-Plus (MP) 是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。 1. 引入 Maven 依赖 要使用 MyBatis-Plus,首先需要在项目的 pom.xml 文件中引入相…...

Mcu_Bsdiff_Upgrade

系统架构 概述 MCU BSDiff 升级系统通过使用二进制差分技术,提供了一种在资源受限的微控制器上进行高效固件更新的机制。系统不传输和存储完整的固件映像,而是只处理固件版本之间的差异,从而显著缩小更新包并降低带宽要求。 该架构遵循一个…...

有监督学习——决策树

任务 1、基于iris_data.csv数据,建立决策树模型,评估模型表现; 2、可视化决策树结构; 3、修改min_samples_leaf参数,对比模型结果 代码工具:jupyter notebook 参考资料 20.23 决策树(1)_哔哩哔哩_bil…...

华为OD机试真题——启动多任务排序(2025B卷:200分)Java/python/JavaScript/C/C++/GO最佳实现

2025 B卷 200分 题型 本专栏内全部题目均提供Java、python、JavaScript、C、C++、GO六种语言的最佳实现方式; 并且每种语言均涵盖详细的问题分析、解题思路、代码实现、代码详解、3个测试用例以及综合分析; 本文收录于专栏:《2025华为OD真题目录+全流程解析+备考攻略+经验分…...

AWS云与第三方通信最佳实践:安全、高效的数据交互方案

引言 在当今的云计算时代,企业经常需要在AWS云环境中存储和处理数据,同时还需要与第三方应用或服务进行数据交互。如何安全、高效地实现这种通信是许多企业面临的挑战。本文将详细探讨几种AWS云与第三方通信的方案,并分析它们的优缺点,帮助您为自己的业务场景选择最佳解决…...