当前位置: 首页 > article >正文

OpenSSL 签名验证详解:PKCS7* p7、cafile 与 RSA 验签实现

OpenSSL 签名验证详解:PKCS7* p7、cafile 与 RSA 验签实现

摘要

本文深入剖析 OpenSSL 中 PKCS7* p7 数据结构和 cafile 的作用及相互关系,详细讲解基于 OpenSSL 的 RSA 验签字符串的 C 语言实现,涵盖签名解析、证书加载、验证流程及关键要点,助力开发者掌握数字签名验证技术,确保数据完整性和来源可靠性。

一、PKCS7* p7 与 cafile 的关键作用

(一)PKCS7* p7:签名数据的核心载体

  1. 结构与内容

    • PKCS#7(Public Key Cryptography Standards #7)标准涵盖数字签名、证书、数据加密及消息认证。PKCS7* p7 是处理 PKCS#7 格式数字签名的关键数据结构,通过 d2i_PKCS7_bio() 函数将 DER 编码的 PKCS#7 数据解析为该结构体。
    • p7 包含丰富的签名信息,如签名者信息、签名算法、签名数据及证书链等。在验证签名时,PKCS7_verify() 函数利用这些信息验证签名有效性、检查证书链完整性,确保数据未被篡改。
  2. 缺失影响

    PKCS7* p7 = d2i_PKCS7_bio(signp7_mem, 0);
    if (p7 == NULL) {// 无法获取签名信息,验证过程无法进行
    }
    
    • 若缺失 p7,将无法读取签名数据,整个验证过程直接失败,相当于没有验证对象。
  3. 释放内存

    • 使用完毕后,需调用 PKCS7_free(p7); 释放结构体,避免内存泄漏。

(二)cafile:信任链的根基

  1. 作用与使用

    • cafile 是包含根证书或中间证书的 CA(Certificate Authority,证书颁发机构)证书文件,用于建立信任链,验证签名者证书合法性,是数字签名验证的信任锚点。
    • 在代码中,通过 X509_STORE_load_locations(store, cafile, NULL) 将 CA 证书加载到证书库。PKCS7_verify() 函数利用加载的 CA 证书验证签名者证书,检查证书链完整性,确认签名者证书由可信 CA 签发。
  2. 缺失影响

    if (!X509_STORE_load_locations(store, cafile, NULL)) {LOG_ERR("Load CA file %s fail\n", cafile);// 无法建立信任链,验证过程无法完成return CRYPTO_FAIL;
    }
    
    • cafile 缺失或无效,无法验证签名者证书真实性,无法确认签名者身份,相当于有签名但无法确认其真实性,验证过程无法完成。
  3. 两者关系

    • p7 是验证对象(要验证什么),cafile 是验证依据(如何验证),二者缺一不可,只有结合才能完成完整的签名验证过程。

二、OpenSSL RSA 验签字符串的 C 语言实现

(一)完整代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/bio.h>
#include <openssl/buffer.h>// 错误处理函数
void handle_openssl_error() {ERR_print_errors_fp(stderr);exit(EXIT_FAILURE);
}// Base64解码函数
int base64_decode(const char *base64_data, unsigned char **decoded_data, size_t *decoded_len) {BIO *bio, *b64;int len = strlen(base64_data);b64 = BIO_new(BIO_f_base64());BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);bio = BIO_new_mem_buf((void*)base64_data, len);bio = BIO_push(b64, bio);*decoded_data = (unsigned char*)malloc(len);if (!*decoded_data) {BIO_free_all(bio);return -1;}*decoded_len = BIO_read(bio, *decoded_data, len);BIO_free_all(bio);return (*decoded_len > 0) ? 0 : -1;
}// RSA验签函数
int rsa_verify_string(const char *pubkey_path, const char *message,const char *base64_signature,const char *hash_alg) {EVP_MD_CTX *mdctx = NULL;EVP_PKEY *pubkey = NULL;FILE *pubkey_fp = NULL;unsigned char *signature = NULL;size_t sig_len = 0;int ret = -1;const EVP_MD *md = NULL;// 1. 根据算法名称获取哈希算法if (strcmp(hash_alg, "sha1") == 0) {md = EVP_sha1();} else if (strcmp(hash_alg, "sha256") == 0) {md = EVP_sha256();} else {fprintf(stderr, "Unsupported hash algorithm: %s\n", hash_alg);goto cleanup;}// 2. 加载公钥pubkey_fp = fopen(pubkey_path, "r");if (!pubkey_fp) {fprintf(stderr, "Error opening public key file\n");goto cleanup;}pubkey = PEM_read_PUBKEY(pubkey_fp, NULL, NULL, NULL);if (!pubkey) {fprintf(stderr, "Error reading public key\n");goto cleanup;}// 3. Base64解码签名if (base64_decode(base64_signature, &signature, &sig_len) != 0) {fprintf(stderr, "Error decoding base64 signature\n");goto cleanup;}// 4. 初始化验签上下文mdctx = EVP_MD_CTX_new();if (!mdctx) {fprintf(stderr, "Error creating EVP_MD_CTX\n");goto cleanup;}if (EVP_DigestVerifyInit(mdctx, NULL, md, NULL, pubkey) != 1) {fprintf(stderr, "Error initializing verification\n");goto cleanup;}// 5. 更新验签数据if (EVP_DigestVerifyUpdate(mdctx, message, strlen(message)) != 1) {fprintf(stderr, "Error updating verification data\n");goto cleanup;}// 6. 完成验签ret = EVP_DigestVerifyFinal(mdctx, signature, sig_len);if (ret == 1) {printf("Signature verification successful (%s)\n", hash_alg);} else if (ret == 0) {printf("Signature verification failed (%s)\n", hash_alg);} else {fprintf(stderr, "Error during verification\n");ret = -1;}cleanup:// 7. 清理资源if (mdctx) EVP_MD_CTX_free(mdctx);if (pubkey) EVP_PKEY_free(pubkey);if (pubkey_fp) fclose(pubkey_fp);if (signature) free(signature);return ret;
}int main(int argc, char *argv[]) {if (argc != 5) {printf("Usage: %s <public_key.pem> <message> <base64_signature> <sha1|sha256>\n", argv[0]);return 1;}// 初始化OpenSSLOpenSSL_add_all_algorithms();ERR_load_crypto_strings();int result = rsa_verify_string(argv[1], argv[2], argv[3], argv[4]);// 清理OpenSSLEVP_cleanup();ERR_free_strings();return (result != 1);
}

(二)代码详解

  1. 哈希算法选择

    if (strcmp(hash_alg, "sha1") == 0) {md = EVP_sha1();
    } else if (strcmp(hash_alg, "sha256") == 0) {md = EVP_sha256();
    }
    
    • 根据传入的哈希算法名称(“sha1” 或 “sha256”),获取对应的哈希算法结构体指针。也可使用 EVP_get_digestbyname("sha256") 动态获取算法。
  2. 公钥加载

    pubkey = PEM_read_PUBKEY(pubkey_fp, NULL, NULL, NULL);
    
    • 从 PEM 格式的公钥文件中读取公钥,支持 RSA、DSA、ECDSA 等多种公钥类型。
  3. Base64 解码

    BIO *b64 = BIO_new(BIO_f_base64());
    BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
    
    • 利用 OpenSSL 的 BIO 接口进行 Base64 解码,BIO_FLAGS_BASE64_NO_NL 标志表示不处理换行符。
  4. 验签流程

    EVP_DigestVerifyInit(mdctx, NULL, md, NULL, pubkey);
    EVP_DigestVerifyUpdate(mdctx, message, strlen(message));
    EVP_DigestVerifyFinal(mdctx, signature, sig_len);
    
    • EVP_DigestVerifyInit:初始化验签上下文,指定哈希算法和公钥。
    • EVP_DigestVerifyUpdate:输入待验证的数据,可多次调用以处理大消息。
    • EVP_DigestVerifyFinal:完成验签并返回结果。
  5. 错误处理

    ERR_print_errors_fp(stderr);
    
    • OpenSSL 错误处理机制可输出详细错误信息,每个 OpenSSL 函数调用后都应检查返回值。

(三)使用示例

  1. 编译命令

    gcc rsa_verify.c -o rsa_verify -lssl -lcrypto
    
  2. 运行示例

    • 使用 SHA256 验证:
      ./rsa_verify public_key.pem "message to verify" "base64_signature" sha256
      
    • 使用 SHA1 验证:
      ./rsa_verify public_key.pem "message to verify" "base64_signature" sha1
      

(四)关键点说明

  1. 哈希算法选择

    • SHA1 产生 160 位(20 字节)摘要,SHA256 产生 256 位(32 字节)摘要。现代应用推荐使用 SHA256,SHA1 已逐渐被淘汰。
  2. 签名格式

    • RSA 签名通常是 PKCS#1 v1.5 格式,签名长度等于 RSA 密钥长度(如 2048 位 = 256 字节)。
  3. 性能考虑

    • 对于大消息,可分块调用 EVP_DigestVerifyUpdate。SHA256 计算比 SHA1 稍慢但更安全。
  4. 资源管理

    • 必须正确释放所有 OpenSSL 对象,使用 goto cleanup 模式集中处理资源释放。
  5. Base64 处理

    • 签名通常以 Base64 编码传输,验签前需要解码为二进制格式。

通过上述内容,开发者可以全面了解 OpenSSL 中 PKCS7* p7 和 cafile 的作用、关系以及 RSA 验签的 C 语言实现细节,从而在实际项目中灵活应用数字签名验证技术,保障数据的安全性和完整性。

相关文章:

OpenSSL 签名验证详解:PKCS7* p7、cafile 与 RSA 验签实现

OpenSSL 签名验证详解&#xff1a;PKCS7* p7、cafile 与 RSA 验签实现 摘要 本文深入剖析 OpenSSL 中 PKCS7* p7 数据结构和 cafile 的作用及相互关系&#xff0c;详细讲解基于 OpenSSL 的 RSA 验签字符串的 C 语言实现&#xff0c;涵盖签名解析、证书加载、验证流程及关键要…...

利用 `ngx_http_xslt_module` 实现 NGINX 的 XML → HTML 转换

一、模块简介 模块名称&#xff1a;ngx_http_xslt_module 首次引入版本&#xff1a;0.7.8 功能&#xff1a;在回传给客户端之前&#xff0c;用指定的 XSLT 样式表对 XML 响应进行转换。 依赖&#xff1a; libxml2libxslt 编译选项&#xff1a;需在 NGINX 编译时添加 --with…...

C语言队列详解

一、什么是队列&#xff1f; 队列&#xff08;Queue&#xff09;是一种先进先出&#xff08;FIFO, First In First Out&#xff09;的线性数据结构。它只允许在一端插入数据&#xff08;队尾&#xff09;&#xff0c;在另一端删除数据&#xff08;队头&#xff09;。常见于排队…...

Qt中的智能指针

Qt中的智能指针 Qt中提供了多种智能指针&#xff0c;用于管理自动分配的内存,避免内存泄漏和悬挂指针的问题。以下是Qt中常见的智能指针及其功能和使用场景&#xff1a; 1. QSharedPointer QSharedPointer 是 Qt 框架中用于管理动态分配对象的智能指针&#xff0c;类似于 C1…...

车载网关策略 --- 车载网关通信故障处理机制深度解析

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 钝感力的“钝”,不是木讷、迟钝,而是直面困境的韧劲和耐力,是面对外界噪音的通透淡然。 生活中有两种人,一种人格外在意别人的眼光;另一种人无论…...

三天掌握PyTorch精髓:从感知机到ResNet的快速进阶方法论

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 一、分析式AI基础与深度学习核心概念 1.1 深度学习三要素 数学基础&#xff1a; f(x;W,b)σ(Wxb)(单层感知机) 1.2 PyTorch核心组件 张量操作示例…...

Python爬虫实战:研究Selenium框架相关技术

1. 引言 1.1 研究背景与意义 随着互联网的快速发展,网页数据量呈爆炸式增长。从网页中提取有价值的信息成为数据挖掘、舆情分析、商业智能等领域的重要基础工作。然而,现代网页技术不断演进,越来越多的网页采用 JavaScript 动态加载内容,传统的基于 HTTP 请求的爬虫技术难…...

分布式缓存:三万字详解Redis

文章目录 缓存全景图PreRedis 整体认知框架一、Redis 简介二、核心特性三、性能模型四、持久化详解五、复制与高可用六、集群与分片方案 Redis 核心数据类型概述1. String2. List3. Set4. Sorted Set&#xff08;有序集合&#xff09;5. Hash6. Bitmap7. Geo8. HyperLogLog Red…...

BiLSTM与Transformer:位置编码的隐式vs显式之争

BiLSTM 与使用位置编码的LLM(如Transformer)的核心区别 一、架构原理对比 维度BiLSTM带位置编码的LLM(如Transformer)基础单元LSTM单元(记忆细胞、门控机制)自注意力机制(Self-Attention)信息传递双向链式传播(前向+后向LSTM)并行多头注意力,全局上下文关联位置信息…...

html5视频播放器和微信小程序如何实现视频的自动播放功能

在HTML5中实现视频自动播放需设置autoplay和muted属性&#xff08;浏览器策略要求静音才能自动播放&#xff09;&#xff0c;并可添加loop循环播放、playsinline同层播放等优化属性。微信小程序通过<video>组件的autoplay属性实现自动播放&#xff0c;同时支持全屏按钮、…...

【QT】QString和QStringList去掉空格的方法总结

目录 一、QString去掉空格 1. 移除字符串首尾的空格&#xff08;trimmed&#xff09; 2. 移除字符串中的所有空格&#xff08;remove&#xff09; 3. 仅移除左侧&#xff08;开头&#xff09;或右侧&#xff08;结尾&#xff09;空格 4. 替换多个连续空格为单个空格 5. 移…...

58同城大数据面试题及参考答案

ROW_NUMBER、RANK、DENSE_RANK 函数的区别是什么? 这三个函数均为窗口函数,用于为结果集分区中的行生成序号,但核心逻辑存在显著差异,具体表现如下: 数据分布与排序规则 假设存在分区内分数数据为 [90, 85, 85, 80],按分数降序排序: ROW_NUMBER:为分区内每行分配唯一序…...

25.5.27学习总结

快速读入&#xff1a; inline int read() {int x 0, f 1;char ch getchar();while (ch < 0 || ch > 9) { // 跳过非数字字符if (ch -) f -1; // 处理负号ch getchar();}while (ch > 0 && ch < 9) {x x * 10 ch - 0; // 逐字符转数字ch ge…...

关于vue结合elementUI输入框回车刷新问题

问题 vue2项目结合elementUI&#xff0c;使用el-form表单时&#xff0c;第一次打开浏览器url辞职&#xff0c;并且是第一次打开带有这个表单的页面时&#xff0c;输入框输入内容&#xff0c;回车后会意外触发页面自动刷新。 原因 当前 el-form 表单只有一个输入框&#xff0…...

vue项目表格甘特图开发

🧩 甘特图可以管理项目进度,生产进度等信息,管理者可以更直观的查看内容。 1. 基础环境搭建 引入 dhtmlx-gantt 插件引入插件样式 dhtmlxgantt.css引入必要的扩展模块(如 markers、tooltip)创建 Vue 组件并挂载 DOM 容器初始化 gantt 图表配置2. 数据准备与处理 定义任务…...

Spark 中,创建 DataFrame 的方式(Scala语言)

在 Spark 中&#xff0c;创建 DataFrame 的方式多种多样&#xff0c;可根据数据来源、结构特性及性能需求灵活选择。 一、创建 DataFrame 的 12 种核心方式 1. 从 RDD 转换&#xff08;需定义 Schema&#xff09; import org.apache.spark.sql.{Row, SparkSession} import o…...

Python----目标检测(MS COCO数据集)

一、MS COCO数据集 COCO 是一个大规模的对象检测、分割和图像描述数据集。COCO有几个 特点&#xff1a; Object segmentation&#xff1a;目标级的分割&#xff08;实例分割&#xff09; Recognition in context&#xff1a;上下文中的识别&#xff08;图像情景识别&#xff0…...

塔能科技:有哪些国内工业节能标杆案例?

在国内工业领域&#xff0c;节能降耗不仅是响应国家绿色发展号召、践行社会责任的必要之举&#xff0c;更是企业降低运营成本、提升核心竞争力的关键策略。塔能科技在这一浪潮中脱颖而出&#xff0c;凭借前沿技术与创新方案&#xff0c;成功打造了多个极具代表性的工业标杆案例…...

图论:floyed算法

Floyd 算法是一种用于寻找加权图中所有顶点对之间最短路径的经典算法&#xff0c;它能够处理负权边&#xff0c;但不能处理负权环。即如果边权有负数&#xff0c;切负权边与其他边构成了环就不能用该算法。该算法的时间复杂度为 \(O(V^3)\)&#xff0c;其中 V 是图中顶点的数量…...

嵌入式系统C语言编程常用设计模式---参数表驱动设计

参数表驱动设计是一种软件开发和系统设计中常用的方法&#xff0c;它通过参数表来控制程序的行为和流程&#xff0c;提高系统的灵活性、可维护性和可扩展性。它将系统的行为逻辑与具体参数分离&#xff0c;通过表格形式集中管理配置信息。这种模式在嵌入式系统、工业控制和自动…...

OpenCV CUDA模块图像过滤------创建一个行方向的一维积分(Sum)滤波器函数createRowSumFilter()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::cuda::createRowSumFilter 是 OpenCV CUDA 模块中的一个函数&#xff0c;用于创建一个行方向的一维积分&#xff08;Sum&#xff09;滤波器。…...

Frequent values/gcd区间

Frequent values 思路&#xff1a; 这题它的数据是递增的&#xff0c;ST表&#xff0c;它的最多的个数只会在在两个区间本身就是最多的或中间地方产生&#xff0c;所以我用map数组储存每个值的左右临界点&#xff0c;在ST表时比较多一个比较中间值的个数就Ok了。 #define _…...

08SpringBoot高级--自动化配置

目录 Spring Boot Starter 依赖管理解释 一、核心概念 二、工作原理 依赖传递&#xff1a; 自动配置&#xff1a; 版本管理&#xff1a; 三、核心流程 四、常用 Starter 示例 五、自定义 Starter 步骤 创建配置类&#xff1a; 配置属性&#xff1a; 注册自动配置&a…...

Deep Evidential Regression

摘要 翻译&#xff1a; 确定性神经网络&#xff08;NNs&#xff09;正日益部署在安全关键领域&#xff0c;其中校准良好、鲁棒且高效的不确定性度量至关重要。本文提出一种新颖方法&#xff0c;用于训练非贝叶斯神经网络以同时估计连续目标值及其关联证据&#xff0c;从而学习…...

「Python教案」循环语句的使用

课程目标 1&#xff0e;知识目标 能使用for循环和while循环设计程序。能使用循环控制语句&#xff0c;break、continue、else设计程序。能使用循环实际问题。 2&#xff0e;能力目标 能根据需求合适的选择循环结构。能对嵌套循环代码进行调试和优化。能利用循环语句设计&am…...

linux快速入门-VMware安装linux,配置静态ip,使用服务器连接工具连接,快照和克隆以及修改相关配置信息

安装VMWare 省略&#xff0c;自己检索 安装操作系统-linux 注意&#xff1a;需要修改的我会给出标题&#xff0c;不要修改的直接点击下一步就可以 选择自定义配置 选择稍后安装操作系统 选择合适的内存 选择NAT模式 仅主机模式 虚拟机只能和主机通信&#xff0c;不能上网…...

用户配置文件(Profile)

2.4.5 用户配置文件&#xff08;Profile&#xff09; 用户配置文件由以下组件构成&#xff1a; 一个运营商安全域&#xff08;MNO-SD&#xff09; 辅助安全域&#xff08;SSD&#xff09;和CASD Applets 应用程序&#xff08;如NFC应用&#xff09; 网络接入应用&#xff…...

ubuntu 制作 ssl 证书

安装 openssl sudo apt install openssl 生成 SSL 证书 # 生成私钥 (Private Key) openssl genrsa -out private.key 2048 在当前目录生成 private.key # 生成证书签名请求 (CSR - Certificate Signing Request) openssl req -new -key private.key -out certificate.csr -…...

Vue组件技术全解析大纲

目录 01-全局组件 02-局部组件 03-组件属性 04-组件事件 05-组件插槽 06-生命周期 07-样式隔离 08-组件测试 09-组件发布 10-组件使用 开发优先级矩阵 01-全局组件 // 全局注册示例 Vue.component(global-button, {template: <button :style"btnStyle"…...

轻量化开源方案——浅析PdfPatcher实际应用

PDF处理在实际工作中十分重要&#xff0c;今天浅析PdfPatcher在PDF处理中的实际应用。 核心功能实测 批量处理能力 支持修改文档属性/页码编号/页面链接 一键清除复制/打印限制&#xff08;实测WPS加密文档可解锁&#xff09; 自动清理隐藏冗余数据&#xff08;经测试可平均…...