小白的进阶之路系列之七----人工智能从初步到精通pytorch自动微分优化以及载入和保存模型
本文将介绍Pytorch的以下内容
自动微分函数
优化
模型保存和载入
好了,我们首先介绍一下关于微分的内容。
在训练神经网络时,最常用的算法是反向传播算法。在该算法中,根据损失函数相对于给定参数的梯度来调整参数(模型权重)。
为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持任何计算图的梯度自动计算。
考虑最简单的单层神经网络,输入x,参数w和b,以及一些损失函数。它可以在PyTorch中以以下方式定义:
import torchx = torch.ones(5) # input tensor
y = torch.zeros(3) # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)
张量、函数与计算图
这段代码定义了以下计算图:
在这个网络中,w和b是我们需要优化的参数。因此,我们需要能够计算损失函数相对于这些变量的梯度。为了做到这一点,我们设置了这些张量的requires_grad属性。
我们应用于张量来构造计算图的函数实际上是函数类的对象。该对象知道如何在正向方向上计算函数,以及如何在反向传播步骤中计算其导数。对反向传播函数的引用存储在张量的grad_fn属性中。您可以在文档中找到Function的更多信息。
print(f"Gradient function for z = {z.grad_fn}")
print(f"Gradient function for loss = {loss.grad_fn}")
输出为:
Gradient function for z = <AddBackward0 object at 0x0000022EDB445C30>
Gradient function for loss = <BinaryCrossEntropyWithLogitsBackward0 object at 0x0000022EDB445D20>
计算梯度
为了优化神经网络中参数的权重,我们需要计算损失函数对参数的导数,即我们需要∂loss/∂w和∂loss/∂B。为了计算这些导数,我们调用loss.backward(),然后从w.g grad和b.g grad中检索值:
loss.backward()
print(w.grad)
print(b.grad)
输出为:
tensor([[0.0549, 0.1796, 0.0399],[0.0549, 0.1796, 0.0399],[0.0549, 0.1796, 0.0399],[0.0549, 0.1796, 0.0399],[0.0549, 0.1796, 0.0399]])
tensor([0.0549, 0.1796, 0.0399])
禁用梯度跟踪
默认情况下,所有requires_grad=True的张量都在跟踪它们的计算历史并支持梯度计算。然而,在某些情况下,我们不需要这样做,例如,当我们训练了模型,只想将其应用于一些输入数据时,即我们只想通过网络进行前向计算。我们可以通过使用torch.no_grad()块包围我们的计算代码来停止跟踪计算:
z = torch.matmul(x, w)+b
print(z.requires_grad)with torch.no_grad():z = torch.matmul(x, w)+b
print(z.requires_grad)
输出为:
True
False
实现相同结果的另一种方法是在张量上使用detach()方法:
z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)
输出为:
False
你可能想要禁用渐变跟踪的原因如下:
-
将神经网络中的一些参数标记为冻结参数。
-
当你只做正向传递时,为了加快计算速度,因为在不跟踪梯度的张量上的计算会更有效率。
更多关于计算图的知识
从概念上讲,autograd在由Function对象组成的有向无环图(DAG)中保存数据(张量)和所有执行的操作(以及产生的新张量)的记录。在DAG中,叶是输入张量,根是输出张量。通过从根到叶的跟踪图,您可以使用链式法则自动计算梯度。
在向前传递中,autograd同时做两件事:
-
运行请求的操作来计算结果张量
-
在DAG中维持操作的梯度函数。
当在DAG根上调用.backward()时,向后传递开始。autograd:
-
计算每个。grad_fn的梯度,
-
在各自张量的.grad属性中累积它们
-
利用链式法则,一直传播到叶张量。
[!TIP]
PyTorch中的dag是动态的,需要注意的重要一点是图形是从头开始重新创建的;在每次.backward()调用之后,autograd开始填充一个新图。这正是允许您在模型中使用控制流语句的原因;如果需要,您可以在每次迭代中更改形状、大小和操作
张量梯度和雅可比积
在很多情况下,我们有一个标量损失函数,我们需要计算关于一些参数的梯度。然而,在某些情况下,输出函数是一个任意张量。在这种情况下,PyTorch允许你计算所谓的雅可比积,而不是实际的梯度。
inp = torch.eye(4, 5, requires_grad=True)
out = (inp+1).pow(2).t()
out.backward(torch.ones_like(out), retain_graph=True)
print(f"First call\n{inp.grad}")
out.backward(torch.ones_like(out), retain_graph=True)
print(f"\nSecond call\n{inp.grad}")
inp.grad.zero_()
out.backward(torch.ones_like(out), retain_graph=True)
print(f"\nCall after zeroing gradients\n{inp.grad}")
输出为:
First call
tensor([[4., 2., 2., 2., 2.],[2., 4., 2., 2., 2.],[2., 2., 4., 2., 2.],[2., 2., 2., 4., 2.]])Second call
tensor([[8., 4., 4., 4., 4.],[4., 8., 4., 4., 4.],[4., 4., 8., 4., 4.],[4., 4., 4., 8., 4.]])Call after zeroing gradients
tensor([[4., 2., 2., 2.,
相关文章:

小白的进阶之路系列之七----人工智能从初步到精通pytorch自动微分优化以及载入和保存模型
本文将介绍Pytorch的以下内容 自动微分函数 优化 模型保存和载入 好了,我们首先介绍一下关于微分的内容。 在训练神经网络时,最常用的算法是反向传播算法。在该算法中,根据损失函数相对于给定参数的梯度来调整参数(模型权重)。 为了计算这些梯度,PyTorch有一个内置…...

创建型模式之 Builder (生成器)
创建型模式之 Builder (生成器) 摘要: 本文介绍了生成器(Builder)设计模式,属于创建型模式之一。该模式通过将复杂对象的构建与表示分离,使同一构建过程能创建不同表现形式。文章以小米汽车不同配置版本为例说明了模式…...

智能物资出入库管控系统
概述 智能物资管理系统利用RFID自动识别技术,物联网技术、人脸识别、指纹、指静脉生物识别技术,应用于军械装备的管理,可实时准确采集军械装备编配、 储存、供应、使用等数据,实时掌握军械装备物资的分布及数量 状况。细化管理到…...
鸿蒙OSUniApp 制作倒计时与提醒功能#三方框架 #Uniapp
使用 UniApp 制作倒计时与提醒功能 前言 倒计时与提醒功能在移动应用中应用广泛,如活动秒杀、任务提醒、考试倒计时等。一个实用的倒计时组件不仅要精准计时,还要兼容多端,尤其是在鸿蒙(HarmonyOS)等新兴平台上保证流…...
深入剖析网络协议:七层协议与四层协议详解
在计算机网络的世界中,数据的传输与交互离不开协议的规范。其中,七层协议和四层协议是网络通信架构的核心概念,它们如同网络世界的 “交通规则”,保障着数据准确、高效地在不同设备间流转。本文将深入解读七层协议与四层协议&…...

机器学习-线性回归基础
一、什么是回归 依据输入x写出一个目标值y的计算方程,求回归系数的过程就叫回归。简言之:根据题意列出方程,求出系数的过程就叫做回归。 回归的目的是预测数值型的目标值y,分类的目的预测标称型的目标值y。 二、线性回归 2.1线性…...
自学嵌入式 day 25 - 系统编程 标准io 缓冲区 文件io
(3)二进制文件读写函数: ①fread: size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream); 功能:从指定的stream流对象中获取nmemeb个大小为size字节的数据块到ptr所在的本地内存中。 参数&…...

[Vue组件]半环进度显示器
[Vue组件]半环进度显示器 纯svg实现,不需要其他第三方库,功能简单,理论上现代浏览器都能支持 封装组件 所有参数都选填,进度都可选填 <template><div class"ys-semiring"><div class"svg-container…...

科技赋能建筑行业,智能楼宇自控系统崭露头角成发展新势力
在科技浪潮席卷全球的时代背景下,传统建筑行业正面临着前所未有的变革压力。随着城市化进程加快,建筑规模与复杂度不断攀升,能源消耗、运营效率、用户体验等问题日益凸显。智能楼宇自控系统凭借物联网、大数据、人工智能等前沿技术࿰…...
Rust入门之并发编程基础(一)
Rust入门之并发编程基础(一) 无畏并发 本文源码 安全且高效地处理并发编程是 Rust 的另一个主要目标。并发编程(Concurrent programming),代表程序的不同部分相互独立地执行,而 并行编程(par…...
高级特性实战:死信队列、延迟队列与优先级队列(二)
三、延迟队列:实现任务定时执行 3.1 延迟队列概念解析 延迟队列(Delay Queue),是一种特殊的队列,它的独特之处在于队列中的元素(消息)并不会立即被处理,而是会在指定的延迟时间过后…...
VR 电缆故障测试系统:技术革新
VR 电缆故障测试系统,作为电力领域的创新科技成果,融合了虚拟现实技术、三维建模、实时交互等前沿技术,为电缆故障测试带来了全新的解决方案。它的工作原理犹如一位经验丰富的侦探,通过层层线索,精准地锁定电缆故障的位…...
Rocky Linux上安装Go
使用官方二进制包安装 1. 下载 Go 官方二进制包 cd /tmp wget https://go.dev/dl/go1.22.3.linux-amd64.tar.gz2. 解压并安装到 /usr/local sudo rm -rf /usr/local/go # 如果之前有旧版本先删除 sudo tar -C /usr/local -xzf go1.22.3.linux-amd64.tar.gz3. 设置环境变量…...
深度学习论文: FastVLM: Efficient Vision Encoding for Vision Language Models
深度学习论文: FastVLM: Efficient Vision Encoding for Vision Language Models FastVLM: Efficient Vision Encoding for Vision Language Models PDF: https://www.arxiv.org/abs/2412.13303 PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代码: https…...

白杨SEO:做AI搜索优化的DeepSeek、豆包、Kimi、百度文心一言、腾讯元宝、通义、智谱、天工等AI生成内容信息采集主要来自哪?占比是多少?
大家好,我是白杨SEO,专注SEO十年以上,全网SEO流量实战派,AI搜索优化研究者。 在开始写之前,先说个抱歉。 上周在上海客户以及线下聚会AI搜索优化分享说各大AI模型的联网搜索是关闭的,最开始上来确实是的。…...

显示docker桌面,vnc远程连接docker
目录 相关概念: 实现步骤: 1.启动docker容器 2.安装x11 3.Docker 容器中安装一个完整的图形桌面(XFCE)和 VNC 远程桌面服务器(TightVNC) 4.配置vncservice 5.本地安装VNC Viewer连接VNC Viewer下载地…...
Web 端顶级视效实现:山海鲸端渲染底层原理与发布模式详解
大家好,欢迎大家回到山海鲸的渲染模式系列教程。昨天,我们看了一下山海鲸支持的3种渲染模式的整体概览。今天,我们就来看一下山海鲸支持的最基础的渲染模式,也就是端渲染的渲染设置。 1. 山海鲸的端渲染 我们说到端渲染…...

腾讯云国际站性能调优
全球化业务扩张中,云端性能直接决定用户体验与商业成败。腾讯云国际站通过资源适配、网络优化与存储革新,为企业提供全链路调优方案。 资源精准适配 实例选型需与业务场景深度耦合,计算优化型实例加速AI训练效率3倍,内存…...

深入解析操作系统内核与用户空间以及内核态与用户态转换
用户空间和内核空间的划分是现代操作系统的基础,对应用程序网络模型的设计和优化有着深远的影响。 内核空间与用户空间的分工 现代操作系统为了保证系统的稳定性和安全性,将虚拟内存空间划分为用户空间和内核空间。 一、用户空间 用户空间是用户程序…...

每日一题洛谷P8662 [蓝桥杯 2018 省 AB] 全球变暖c++
P8662 [蓝桥杯 2018 省 AB] 全球变暖 - 洛谷 (luogu.com.cn) DFS #include<iostream> using namespace std; int n, res; char a[1005][1005]; bool vis[1005][1005]; bool flag; int dx[4] { 0,0,1,-1 }; int dy[4] { 1,-1,0,0 }; void dfs(int x, int y) {vis[x][y]…...

【JVM】初识JVM 从字节码文件到类的生命周期
初识JVM JVM(Java Virtual Machine)即 Java 虚拟机,是 Java 技术的核心组件之一。JVM的本质就是运行在计算机上的一个程序,通过软件模拟实现了一台抽象的计算机的功能。JVM是Java程序的运行环境,负责加载字节码文件&a…...

多级体验体系构建:基于开源AI智能客服与AI智能名片的S2B2C商城小程序体验升级路径研究
摘要:在体验经济时代,传统企业单一的总部体验模式难以覆盖全链路用户需求。本文针对B端与C端体验深度差异,提出“一级总部体验—二级区域体验—三级终端体验”的分层架构,并引入“开源AI智能客服”与“AI智能名片”技术࿰…...
每日算法 -【Swift 算法】字符串转整数算法题详解:myAtoi 实现与正则表达式对比
Swift 字符串转整数算法题详解:myAtoi 实现与正则表达式对比 🧩 题目背景 LeetCode 上的经典算法题 8. String to Integer (atoi) 是一道考察字符串解析与边界处理的题目。这道题虽看似简单,但处理细节相当复杂。我们将使用 Swift 语言实现…...
记录一个难崩的bug
1.后端配置了 Filter 过滤器,如果再配置了Configuration ,那么会出现冲突吗? 过滤器与Configuration类本身无直接冲突,但需注意注册机制、执行顺序和依赖管理。通过显式控制过滤器的注册方式和优先级,结合Spring Security的链式配…...

Git切换历史版本及Gitee云绑定
1、git介绍 Git是目前世界上最先进的分布式版本控制系统 Linux <- BitKeeper(不是开源的,但免费的,后来要收费) Linus Torvalds(林纳斯托瓦兹) 两周时间吧,弄了个 Git;大约一个月就把Linux代码从BitK…...
智能外呼系统中 NLP 意图理解的工作原理与技术实现
智能外呼系统通过整合语音识别(ASR)、自然语言处理(NLP)和语音合成(TTS)等技术,实现了自动化的电话交互。其中,NLP 意图理解是核心模块,负责解析用户话语中的语义和意图&…...

服务器的IP是什么东西?
一、什么是服务器的IP地址? 服务器的IP地址是互联网协议(Internet Protocol)的缩写,是服务器在网络中的唯一数字标识符。它类似于现实生活中的门牌号,用于标识服务器在网络中的位置,使其他设备能够通过它与…...

[问题解决]:Unable to find image ‘containrrr/watchtower:latest‘ locally
一,问题 在使用docker安装部署新应用的时候,报错:Unable to find image containrrr/watchtower:latest locally 分析认为是当前docker的资源库里找不到这个软件的镜像,需要配置一个包含这个软件镜像的新的资源库。 二࿰…...

【文件上传】阿里云对象存储服务实现文件上传
一、基础 上传到本地: package org.example.controller;import lombok.extern.slf4j.Slf4j; import org.example.pojo.Result; import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestMapping; imp…...

IPv6代理如何引领下一代网络未来
随着互联网技术的不断发展,IPv6逐渐成为下一代网络协议的核心,替代IPv4已是大势所趋。IPv6代理作为IPv6网络环境下的重要工具,为用户提供了更高效、更安全的网络解决方案。 IPv6代理的定义 IPv6代理是在IPv6网络环境中为处理IPv4转换和其他网…...