组合型回溯+剪枝
本篇基于b站灵茶山艾府。
77. 组合
给定两个整数 n
和 k
,返回范围 [1, n]
中所有可能的 k
个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2
输出:
[[2,4],[3,4],[2,3],[1,2],[1,3],[1,4],
]
示例 2:
输入:n = 1, k = 1
输出:[[1]]
class Solution:def combine(self, n: int, k: int) -> List[List[int]]:# 与子集型组合唯一的区别在于path数组长度是确定的# dfs(i)表示在下标小于等于i的数组中选择k个数的组合# 1.选或不选# def dfs(i):# nonlocal k# if k == 0: # 已经选完了k个数,不用再继续递归# ans.append(path.copy())# return# if i == 0:# return# dfs(i - 1)# k -= 1# path.append(i)# dfs(i - 1)# path.pop()# k += 1# 2.枚举选哪个数def dfs(i):nonlocal kif k == 0:ans.append(path.copy())for j in range(i, 0, -1):k -= 1path.append(j)dfs(j - 1)path.pop()k += 1path = []ans = []dfs(n)return ans
216. 组合总和 III
找出所有相加之和为 n
的 k
个数的组合,且满足下列条件:
- 只使用数字1到9
- 每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。
示例 1:
输入: k = 3, n = 7
输出: [[1,2,4]]
解释:
1 + 2 + 4 = 7
没有其他符合的组合了。
示例 2:
输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
解释:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
没有其他符合的组合了。
示例 3:
输入: k = 4, n = 1
输出: []
解释: 不存在有效的组合。
在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。
class Solution:def combinationSum3(self, k: int, n: int) -> List[List[int]]:# dfs(i)表示从[1,i]中选择相加之和为n的k个数的集合# 1.选/不选# def dfs(i):# nonlocal k, n# # 剪枝,如果最大的k个数不能构成n,那么后面怎么递归都无法得出答案# if i >= k and n > (i + i - k + 1) * k // 2:# return# if k == 0 and n == 0:# ans.append(path.copy())# return# if i == 0:# return# dfs(i - 1) # 不选当前数字# k -= 1# n -= i# path.append(i)# dfs(i - 1)# path.pop()# n += i# k += 1# 2.枚举选哪个数字def dfs(i):nonlocal k, nif i >= k and n > (i + i - k + 1) * k // 2:returnif n == 0 and k == 0:ans.append(path.copy())returnfor j in range(i, 0, -1):k -= 1n -= jpath.append(j)dfs(j - 1)n += jk += 1path.pop()path = []ans = []dfs(9)return ans
22. 括号生成
数字 n
代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
示例 1:
输入:n = 3
输出:["((()))","(()())","(())()","()(())","()()()"]
示例 2:
输入:n = 1
输出:["()"]
class Solution:def generateParenthesis(self, n: int) -> List[str]:# def(i)表示在下标大于等于i的位置中生成所有可能的有效括号组合# 什么时候可以放左括号?# 只要左括号个数小于n,都可以放# 什么时候可以放右括号?# 已经放的右括号个数小于左括号个数时,就可以放def dfs(i):nonlocal left, rightif i == n * 2:ans.append("".join(path))if left < n:# 如果可以放左括号path.append("(")left += 1dfs(i + 1)path.pop() # 回溯left -= 1if right < left:path.append(")")right += 1dfs(i + 1)path.pop()right -= 1left = right = 0path = []ans = []dfs(0)return ansleft = right = 0path = []ans = []dfs(0)return ans# 当然也可以直接先开辟一个2*n的数组,这样就不用显示的回溯(path.pop())
相关文章:
组合型回溯+剪枝
本篇基于b站灵茶山艾府。 77. 组合 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 1: 输入:n 4, k 2 输出: [[2,4],[3,4],[2,3],[1,2],[1,3],[1,4], ]示例 2&#…...

python:机器学习(KNN算法)
本文目录: 一、K-近邻算法思想二、KNN的应用方式( 一)分类流程(二)回归流程 三、API介绍(一)分类预测操作(二)回归预测操作 四、距离度量方法(一)…...

【笔记】2025 年 Windows 系统下 abu 量化交易库部署与适配指南
#工作记录 前言 在量化交易的学习探索中,偶然接触到 2017 年开源的 abu 量化交易库,其代码结构和思路对新手理解量化回测、指标分析等基础逻辑有一定参考价值。然而,当尝试在 2025 年的开发环境中部署这个久未更新的项目时,遇到…...

小程序 - 视图与逻辑
个人简介 👨💻个人主页: 魔术师 📖学习方向: 主攻前端方向,正逐渐往全栈发展 🚴个人状态: 研发工程师,现效力于政务服务网事业 🇨🇳人生格言: “心有多大,舞台就有多大。” 📚推荐学习: 🍉Vue2 🍋Vue3 🍓Vue2/3项目实战 🥝Node.js实战 🍒T…...

ChatGPT Plus/Pro 订阅教程(支持支付宝)
订阅 ChatGPT Plus GPT-4 最简单,成功率最高的方案 1. 登录 chat.openai.com 依次点击 Login ,输入邮箱和密码 2. 点击升级 Upgrade 登录自己的 OpenAI 帐户后,点击左下角的 Upgrade to Plus,在弹窗中选择 Upgrade plan。 如果…...

[蓝帽杯 2022 初赛]网站取证_2
一、找到与数据库有关系的PHP文件 打开内容如下,发现数据库密码是函数my_encrypt()返回的结果。 二、在文件夹encrypt中找到encrypt.php,内容如下,其中mcrypt已不再使用,所以使用php>7版本可能没有执行结果,需要换成较低版本…...
vue3+Pinia+element-plus 后台管理系统项目实战记录
vue3Piniaelement-plus 后台管理系统项目实战记录 参考项目:https://www.bilibili.com/video/BV1L24y1n7tB 全局api provide、inject vue2 import api from/api vue.propotype.$api apithis.$api.xxxvue3 import api from/api app.provide($api, api)import {…...

安装 Node.js 和配置 cnpm 镜像源
一、安装 Node.js 方式一:官网下载(适合所有系统) 访问 Node.js 官网 推荐选择 LTS(长期支持)版本,点击下载安装包。 根据系统提示一步步完成安装。 方式二:通过包管理器安装(建…...

MacOS内存管理-删除冗余系统数据System Data
文章目录 一、问题复现二、解决思路三、解决流程四、附录 一、问题复现 以题主的的 Mac 为例,我们可以看到System Data所占数据高达77.08GB,远远超出系统所占内存 二、解决思路 占据大量空间的是分散在系统中各个位置Cache数据; 其中容量最…...
电脑开机后长时间黑屏,桌面图标和任务栏很久才会出现,但是可通过任务管理器打开应用程序,如何解决
目录 一、造成这种情况的主要原因(详细分析): (1)启动项过多,导致系统资源占用过高(最常见) 检测方法: (2)系统服务启动异常(常见&a…...

行为型:中介者模式
目录 1、核心思想 2、实现方式 2.1 模式结构 2.2 实现案例 3、优缺点分析 4、适用场景 5、注意事项 1、核心思想 目的:通过引入一个中介对象来封装一组对象之间的交互,解决对象间过度耦合、频繁交互的问题。不管是对象引用维护还是消息的转发&am…...

光谱相机在生态修复监测中的应用
光谱相机通过多维光谱数据采集与智能分析技术,在生态修复监测中构建起“感知-评估-验证”的全周期管理体系,其核心应用方向如下: 一、土壤修复效能量化评估 重金属污染动态监测 通过短波红外(1000-2500nm)波…...

吉林大学操作系统上机实验五(磁盘引臂调度算法(scan算法)实现)
本次实验无参考,从头开始实现。 一.实验内容 模拟实现任意一个磁盘引臂调度算法,对磁盘进行移臂操作列出基于该种算法的磁道访问序列,计算平均寻道长度。 二.实验设计 假设磁盘只有一个盘面,并且磁盘是可移动头磁盘。磁盘是可…...
【深度学习-pytorch篇】4. 正则化方法(Regularization Techniques)
正则化方法(Regularization Techniques) 1. 目标 理解什么是过拟合及其影响掌握常见正则化技术:L2 正则化、Dropout、Batch Normalization、Early Stopping能够使用 PyTorch 编程实现这些正则化方法并进行比较分析 2. 数据构造与任务设定 …...

ESP8266+STM32 AT驱动程序,心知天气API 记录时间: 2025年5月26日13:24:11
接线为 串口2 接入ESP8266 esp8266.c #include "stm32f10x.h"//8266预处理文件 #include "esp8266.h"//硬件驱动 #include "delay.h" #include "usart.h"//用得到的库 #include <string.h> #include <stdio.h> #include …...
WPF【11_5】WPF实战-重构与美化(MVVM 实战)
11-10 【重构】创建视图模型,显示客户列表 正式进入 MVVM 架构的代码实战。在之前的课程中, Model 和 View 这部分的代码重构实际上已经完成了。 Model 就是在 Models 文件夹中看到的两个文件, Customer 和 Appointment。 而 View 则是所有与…...

⭐️⭐️⭐️ 模拟题及答案 ⭐️⭐️⭐️ 大模型Clouder认证:RAG应用构建及优化
考试注意事项: 一、单选题(21题) 检索增强生成(RAG)的核心技术结合了什么? A. 图像识别与自然语言处理 B. 信息检索与文本生成 C. 语音识别与知识图谱 D. 数据挖掘与机器学习 RAG技术中,“建立索引”步骤不包括以下哪项操作? A. 将文档解析为纯文本 B. 文本片段分割(…...

kali系统的安装及配置
1 kali下载 Kali 下载地址:Get Kali | Kali Linux (https://www.kali.org/get-kali) 下载 kali-linux-2024.4-installer-amd64.iso (http://cdimage.kali.org/kali-2024.4/) 2. 具体安装步骤: 2.1 进入官方地址,点击…...
CSS--background-repeat详解
属性介绍 background-repeat 属性在CSS中用于控制背景图像是否以及如何重复。当背景图像的尺寸小于其容器的尺寸时,该属性决定了图像如何填充额外的空间。默认情况下,背景图像会在横向和纵向上重复,直到覆盖整个元素。 常见取值 repeat …...

Redis的大Key问题如何解决?
大家好,我是锋哥。今天分享关于【Redis的大Key问题如何解决?】面试题。希望对大家有帮助; Redis的大Key问题如何解决? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Redis中的“大Key”问题是指某个键的值占用了过多…...

影楼精修-AI追色算法解析
注意:本文样例图片为了避免侵权,均使用AIGC生成; AI追色是像素蛋糕软件中比较受欢迎的一个功能点,本文将针对AI追色来解析一下大概的技术原理。 功能分析 AI追色实际上可以理解为颜色迁移的一种变体或者叫做升级版,…...

node入门:安装和npm使用
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、安装npm命令nvm 前言 因为学习vue接触的,一直以为node是和vue绑定的,还以为vue跑起来必须要node,后续发现并不是。 看…...
‘js@https://registry.npmmirror.com/JS/-/JS-0.1.0.tgz‘ is not in this registry
解决方法: 1. npm cache clean --force 2.临时切换到官方源 npm config set registry https://registry.npmjs.org/ npm install js0.1.0 npm config set registry https://registry.npmmirror.com/ # 切换回镜像源...
el-table-column如何获取行数据的值
在Element UI的el-table组件中,你可以通过el-table-column的slot-scope属性(在Vue 2.x中)或者#default插槽的scope属性(在Vue 3.x中)来获取当前行的数据。以下是如何实现这一功能的详细步骤: 在el-table-…...
leetcode450.删除二叉搜索树中的节点:迭代法巧用中间节点应对多场景删除
一、题目深度解析与BST特性剖析 在二叉搜索树(BST)中删除节点,需确保删除操作后树依然保持BST特性。题目要求我们根据给定的节点值key,在BST中删除对应节点。BST的核心特性是左子树所有节点值小于根节点值,右子树所有…...

java虚拟机2
一、垃圾回收机制(GC) 1. 回收区域:GC主要回收堆内存区域。堆用于存放new出来的对象 。程序计数器、元数据区和栈一般不是GC回收的重点区域。 2. 回收单位:GC以对象为单位回收内存,而非字节。按对象维度回收更简便&am…...
自监督软提示调优:跨域NLP新突破
自监督的软提示调优方法(SPSS) 这篇论文提出了一种基于自监督的软提示调优方法(SPSS),用于无监督领域自适应。其核心目标是通过挖掘源域和目标域的内部知识,解决传统提示调优在跨域场景中依赖通用知识、模板生成低效的问题。 一、核心实现原理 1. 自监督分层聚类优化(…...

Pydantic 学习与使用
Pydantic 学习与使用 在 Fastapi 的 Web 开发中的数据验证通常都是在使用 Pydantic 来进行数据的校验,本文将对 Pydantic 的使用方法做记录与学习。 **简介:**Pydantic 是一个在 Python 中用于数据验证和解析的第三方库,它现在是 Python 使…...

PCB设计教程【入门篇】——电路分析基础-基本元件(二极管三极管场效应管)
前言 本教程基于B站Expert电子实验室的PCB设计教学的整理,为个人学习记录,旨在帮助PCB设计新手入门。所有内容仅作学习交流使用,无任何商业目的。若涉及侵权,请随时联系,将会立即处理、 目录 前言 1.二极管 1.发光…...

能按需拆分 PDF 为多个文档的工具
软件介绍 彩凤 PDF 拆分精灵是一款具备 PDF 拆分功能的软件。 功能特点 PDF 拆分功能较为常见,很多 PDF 软件都具备,例如 DC 软件提取 PDF 较为方便,但它不能从一个 PDF 里提取出多个 PDF。据印象,其他 PDF 软件也似乎没有能从…...