当前位置: 首页 > article >正文

【专题】神经网络期末复习资料(题库)

神经网络期末复习资料(题库)

链接:https://blog.csdn.net/Pqf18064375973/article/details/148332887?sharetype=blogdetail&sharerId=148332887&sharerefer=PC&sharesource=Pqf18064375973&sharefrom=mp_from_link

【测试】

  • The —— does not only work accordina to the aldorithm but also can predict a solution for a #&task and make conclusions using its previous experience
    A.Artificial Intelligence
    B.Neural Network
    C.Deep Neural Network
    D.Machine learning
  • Deep learning is a subset of machine learning which is essentially a —— with 3 or more layers.
    A.Machine Learning
    B.Artificial intelligence
    C.Neural network
    D.Big data
  • The —— is this kind of technology that is not an algorithm. it is a network that has weights on it. and you can adiust the weights so thatit leamns. You teach i
    through trials.
    A.Machine Learning
    B.Artificial intelligence
    C.Deep learning
    D.Neural network
  • Team of Sir Geoffrey Hinton, also dubbed as “The Father of Deep Learning”, published the research paper on ——
    A.forward propagation
    B.back propagation
    C.deep propagation
    D.accurate propagation
  • —— is a type of artificial neural network which uses sequential data or time series data.
    A.Restricted Boltzmann Machines (RBMs)
    B.Deep Belief Networks (DBNs)
    C.Convolutional Neural Networks (CNNs)
    D.Recurrent Neural Networks (RNNs)
  • Which optimizer has a fixed learning rate?
    A.AdaDelta
    B.RMSprop
    C.Gradient Descent
    D.Adam
  • Some approaches to machine learning tend to focus on learning only one or two layers of representations ofthe data, hence,theyre sometimes callec ——
    A.Shallow Learning
    B.Broad Learning
    C.Deep learning
    D.Neural network
  • Which optimizer performs well on sparse data?
    A.Adam
    B.AdaGrad
    C.RMSprop
    D.Momentum
  • This deep learning algorithm became very popular after the Netflix Competition whereratings for movies and beat most of its competition —— was used as a collaborative filtering technique to predict user
    A.Restricted Boltzmann Machines (RBMs)
    B.Deep Belief Networks (DBNs)
    C.Convolutional Neural Networks (CNNs)
    D.Recurrent Neural Networks(RNNS
  • lmage caption is the example of which type of RNN?
    A.One to One RNN
    B.One to Many RNN
    C.Many to One RNN
    D.Many to Many RNN
  • What is the output range of the ReLU activation function?
    A.(1,1)
    B.[0, ∞)
    C.(0, 1)
    D.(-∞,∞)
  • Operations like data cleaning to find missing values ,to remove useless data and perform basic statistical analysis like drawing plots, comparing diferent features of the data set and more. This is done in which phase of life cycle
    A.Data Acquisition
    B.Data exploration
    C.Modelling
    D Fvaluation
  • How well does the Transformer model handle long-term dependencies?
    A.general
    B.poor
    C.excellent
    D.none
  • —— algorithms use historical data as input to predict new output values.
    A.Machine Learning
    B.Artificial intelligence
    C.Deep learning
    D.Neural network
  • Which RNN variant can handle long-term dependencies and is faster?
    A.GRU
    B.LSTM
    C.SimpleRNN
    D.Bidirectional LSTM
  • —— are algorithms or methods used to change the attributes of the neural network such as weights 换and learning rate to reduce the losses
    A.0ptimizers
    B.Neural network program
    C.Matrix
    D.None of these
  • In visual system of mammalian,peripheral part is formed by the eves,theintermediate (by the transmission of nerve impulses -the optic nerves,and the central-the visual centers in the
    A.cerebral cortex.
    B.ears
    C.pulse
    D.shape
  • Mammalian vision is the process of mammals that
    A.Perceiving light,
    B.Analyzing it
    C.Forming subjective sensations
    D.All of these
  • The neural network is this kind of technolgy that is not an alorithm. it is a networkthat has weihts on it and you can adiust the weights so that it leams, You teach it through trials.This Definition is said by
    A.Sir Geoffrey Hinton
    B.Howard Rheingold
    C.Mike caferella
    D.Matei Zaharia
  • CNN layers are
    A.Convolutional Layer
    B.Pooling Layer
    C.Fully connected layer
    D.All of these
  • The term is frequently applied to the project of developing systems endowed with the intellectual processes characteristic ofhumans, such as the ability to reason,discover meaning, generalize, or learn from past experience.
    A.Machine Learning
    B.Artificial intelligence
    C.Deep learning
    D.Neural network
  • Which optimizer combines momentum and adaptive learning rate?
    A.Momentum
    B.Adam
    C.AdaGrad
    D.SGD
  • The——is the fundamental building block of neural networks
    A.Artificial Intelligence
    B.Neuron
    C.Deep learning
    D.Machine learning
  • CNN has a.that has several filters to perform the convolution operation
    A.Convolution Layer
    B.Rectified Linear Unit (ReLU)
    C.Pooling Layer
    D.Fully Connected Layer
  • What are the main advantages of the GELU activation function over ReLU?
    A.More efficient calculation
    B.Avoid gradient disappearance
    C.Larger output range
    D.Suitable for hidden layers
  • During image processing first layer’s output is passed on to the next layer which detects more complex features such as ——
    edges
    A.combinational or sequentia!
    B.corners or diagonal
    C.combinational or corners
    D.vertical or corners
  • A convolution tool that separates and identifies the various features of the image for analysis in a process called as——
    A.Feature identification
    B.Feature Extraction
    C.Partial Extraction
    D.Feature recognition
  • —— show very effective results in image and video recognition, natural language processing, and recommender systems.
    A.Feed forward Neural Network- Artificial Neuron
    B.Radial Basis Function Neural Network
    C.Multilayer Perceptron
    D.Convolutional Neural Network
  • —— is useful for regression, classification, dimensionality reduction, feature learning, topic modelling and collaborative filtering
    A.Restricted Boltzmann Machines (RBMs)
    B.Deep Belief Networks (DBNs)
    C.Convolutional Neural Networks (CNNs)
    D.Recurrent Neural Networks (RNNs)
  • Which activation function has the “Dying ReLU” problem?
    A.Leaky ReLU
    B.ReLU
    C.Tanh
    D.Sigmoid
  • In Visual system of mammalian, the capabilities of the nervous system to process informaton received are limited to
    A.tens of bits per second.
    B.hundreds of bits per second.
    C.thousands of bits per second
    D.tens of bytes per second.
  • Modern deep learning often involvesof successive layers of representations
    A.1 or 100
    B.100 or 1000
    C.10 or 100
    D.1 or 2
  • Which optimizer can speed up when dealing with plateau problems?
    A.SGD
    B.Momentum
    C.AdaGrad
    D.Gradient Descent
  • Team of—— , also dubbed as “The Father of Deep Learning”, published the research paper on Back propagation
    A.Mike caferella
    B.Matei Zaharia
    C.Sir Geoffrey clinton
    D.Sir Geoffrey Hinton
  • What scenario is the Softmax activation function typically used for?
    A.Return to mission
    B.Two-category output layer
    C.Multi-classification output layer
    D.Hidden layer
  • Which Phase of deep learning life cycle , gather data from reliable data sources
    A.Problem scoping
    B.Data Acquisition
    C.Data exploration
    D.Modelling
  • —— basically extends the area of an image in which a convolutional neural network processes
    A.Padding
    B.stride in CNN
    C.ANN
    D.Neural Network
  • Which phase of deep learning life cycle takes care about spelling mistakes or maybe labelling the data wrong.
    A.Problem scoping
    B.Data Acquisition
    C.Data exploration
    D.Modelling
  • Full form of deep learning model RBM is ——
    A.Real Boltzmann Machines
    B.Restricted Bussiness Machines
    C.Restricted Boltzmann Machines
    D.Restricted Boltzmann Major
  • fraud detection, spam filtering, malware threat detection, business process automation
    (BPA)and predictive maintenance are examples of
    A.Machine Learning
    B.Artificial intelligence
    C.Deep learning
    D.Neural network
    E
  • The output range of the**【 sigmoid 】**activation function is (0, 1)
  • The hyperparameters of the ADAM optimizer include 【 learning rate 】,B1, B2, and ε.
  • In the RNN variant, the Use Case Complexity of Bidirectional LSTM is the**【High】**
  • Yann LeCun built the first convolutional neural network called **【 LeNet 】**in 1988
  • The first layer of image processing usually extracts basic features such as horizontal or diagonal 【edges】
  • AdaDelta optimizers usually do not require a global learning rate.【T F 】
  • The output of the Tanh activation function is zero-mean.【T F】
  • SimpleRNN is suitable for dealing with long-term dependencies.【T F
  • Rectified Linear Unit (RelU) : CNN’s have a ReLU layer to perform several flters to perform the convolution operation.【T F
  • Responsible for this process in mammals is the touch sensory svstem,the foundations of which were formed at an eary stace in the evolution of chordates.【T F

【课后题】

  • —— the ability of a digital computer or computer-controlled robot to perform tasks commonly associated with intelligent beings.

    a. Artificial intelligence

    b. Machine learning

    c. Deep learning

    d. None of the above

  • Which of the following is not a type of Neural network

a. Modular-To-Modular Models.

b. Radial Basis Function Neural Network

c. Multilayer Perceptron

d. Convolutional Neural Network

  • Operations like data cleaning to find missing values , to remove useless data and perform basic statistical analysis like drawing plots, comparing different features of the data set and more. This is done in which phase of life cycle

    a. Data Acquisition

    b. Data exploration

    c. Modelling

    d. Evaluation

  • It is useful for regression, classification, dimensionality reduction, feature learning, topic modelling and collaborative filtering.

    a. Restricted Boltzmann Machines (RBMs)

    b. Deep Belief Networks (DBNs)

    c. Convolutional Neural Networks (CNNs)

    d. Recurrent Neural Networks (RNNs)

  • CNN has a —— that has several filters to perform the convolution operation.

    a. Convolution Layer

    b. Rectified Linear Unit (ReLU)

    c. Pooling Layer

    d. Fully Connected Layer

  • —— can be used to build speech-recognition, image-recognition, and machine-translation software.

    a. Deep Belief Networks (DBNs)

    b. Convolutional Neural Networks (CNNs)

    c. Recurrent Neural Networks (RNNs)

    d. Multilayer Perceptrons (MLPs)

  • Yann LeCun, director of Facebook’s AI Research Group, is the pioneer of ——

    a. Restricted Boltzmann Machines (RBMs)

    b. Deep Belief Networks (DBNs)

    c. Convolutional Neural Networks (CNNs)

    d. Recurrent Neural Networks (RNNs)

  • A ____________ that utilizes the output from the convolution process and predicts the class of the image based on the features extracted in previous stages.

    a. Convolution Layer

    b. Rectified Linear Unit (ReLU)

    c. Pooling Layer

    d. Fully Connected Layer

  • Mammalian vision is the process of mammals that

    a. Perceiving light,

    b. Analyzing it

    c. Forming subjective sensations

    d. All of these

  • A deep CNN model consists of a finite set of processing layers that can learn various features of input data (e.g., image) with _____ level of abstraction.

    a. single

    b. multiple

    c. one

    d. two

  • —— basically extends the area of an image in which a convolutional neural network processes.

    a. Padding

    b. stride in CNN

    c. ANN

    d. Neural Network

  • Advantages of convolution layers are:

    a. Sparse Connectivity

    b. Weight Sharing

    c. A & B

    d. none of these

  • Rosenblatt’s perceptron is basically a classifier.

    a. unary

    b. binary

    c. ternary

    d. All of these

  • The ______ is the fundamental building block of neural networks.

    a. Artificial Intelligence

    b. Neuron

    c. Deep learning

    d. Machine learning

  • It is one kind of backpropagation network which produces a mapping of a static input for static output.

    a. Static back-propagation

    b. Dynamic back-propagation

    c. Concurrent Backpropagation

    d. Recurrent Backpropagation

  • The ______________ does not only work according to the algorithm but also can predict a solution for a task and make conclusions using its previous experience.

    a. Artificial Intelligence

    b. Neural Network

    c. Deep Neural Network

    d. Machine learning

  • Apple’s Siri uses _________ for image recognition and voice recognition respectively.

    a. TensorFlow

    b. PyTorch

    c. Loss Function

    d. Deep Neural Network

  • _______ can be used as an alternative to cross-entropy, which was initially developed to use with a support vector machine algorithm.

    a. Cross Entropy Loss

    b. Hinge Loss

    c. Squared Hinge Loss

    d. All of these

  • ________ are algorithms or methods used to change the attributes of the neural network such as weights and learning rate to reduce the losses.

    a. Optimizers

    b. Neural network program

    c. Matrix

    d. None of these

  • It is an extension of AdaGrad which tends to remove the decaying learning Rate problem of it.

    a. Mini-Batch Gradient Descent

    b. Momentum

    c. Adaptive Gradient Descent (AdaGrad)

    d. AdaDelta

  • ____________ occurs when the derivative or slope will get smaller and smaller as we go backward with every layer during backpropagation.

    a. Adaptive Gradient Descent

    b. Vanishing Gradient

    c. Gradient Descent

    d. None of these

  • Image caption is the example of which type of RNN?

    a. One to One RNN

    b. One to Many RNN

    c. Many to One RNN

    d. Many to Many RNN

  • Full form of GRU is _______

    a. Gated Recurrent Unit

    b. Good Recurrent Universe

    c. Gated Recursive Unit

    d. None of these

  • Recurrent neural networks lie in their diversity of application. When we are dealing with RNNs they have a great ability to deal with various input and output types like

    a. Sentiment Classification

    b. Image Captioning

    c. Language Translation

    d. All of these

  • Which of the following is not an application of autoencoders?

    a. Image Coloring

    b. Feature variation

    c. Dimensionality Reduction

    d. Voice recognition

  • A ______ is an unsupervised deep learning technique that helps a neural network encode unlabeled training data.

    a. Sparse autoencoders

    b. Contractive autoencoder

    c. Deep autoencoder

    d. All of these

  • Which property of autoencoders describes the decompressed outputs will be degraded compared to the original inputs?

    a. Data Specific

    b. Lossy

    c. Lossless

    d. Algorithm specific

相关文章:

【专题】神经网络期末复习资料(题库)

神经网络期末复习资料(题库) 链接:https://blog.csdn.net/Pqf18064375973/article/details/148332887?sharetypeblogdetail&sharerId148332887&sharereferPC&sharesourcePqf18064375973&sharefrommp_from_link 【测试】 Th…...

2.qml使用c++

目录 1.概述2.注册方式3. 分类①枚举类②工具类③数据类④资源类②视图类 1.概述 qml是用来干嘛的? 当然是提高UI开发效率的 为什么要混合C? 因为qml无法处理密集型数据逻辑 而加入c则兼顾了性能 达到11>2 总结就是 qml 开发UI, C 实现逻辑 而js的用…...

【数据结构】字符串操作整理(C++)

1. 字符串长度与容量 size() / length() 定义&#xff1a;返回字符串的当前长度&#xff08;字符数&#xff09;。用法&#xff1a; string s "hello"; cout << s.size(); // 输出&#xff1a;5提示&#xff1a;size() 和 length() 功能完全相同&#xff0…...

PostgreSQL的扩展 dblink

PostgreSQL的扩展 dblink dblink 是 PostgreSQL 的一个核心扩展&#xff0c;允许在当前数据库中访问其他 PostgreSQL 数据库的数据&#xff0c;实现跨数据库查询功能。 一、dblink 扩展安装与启用 1. 安装扩展 -- 使用超级用户安装 CREATE EXTENSION dblink;2. 验证安装 -…...

c++5月31日笔记

题目&#xff1a;水龙头 时间限制&#xff1a;C/C 语言 1000MS&#xff1b;其他语言 3000MS 内存限制&#xff1a;C/C 语言 65536KB&#xff1b;其他语言 589824KB 题目描述&#xff1a; 小明在 0 时刻&#xff08;初始时刻&#xff09;将一个空桶放置在漏水的水龙头下。已知桶…...

Python打卡训练营Day41

DAY 41 简单CNN 知识回顾 数据增强卷积神经网络定义的写法batch归一化&#xff1a;调整一个批次的分布&#xff0c;常用与图像数据特征图&#xff1a;只有卷积操作输出的才叫特征图调度器&#xff1a;直接修改基础学习率 卷积操作常见流程如下&#xff1a; 1. 输入 → 卷积层 →…...

【Java进阶】图像处理:从基础概念掌握实际操作

一、核心概念&#xff1a;BufferedImage - 图像的画布与数据载体 在Java图像处理的世界里&#xff0c;BufferedImage是当之无愧的核心。你可以将它想象成一块内存中的画布&#xff0c;所有的像素数据、颜色模型以及图像的宽度、高度等信息都存储在其中。 BufferedImage继承自…...

JAVA网络编程——socket套接字的介绍下(详细)

目录 前言 1.TCP 套接字编程 与 UDP 数据报套接字的区别 2.TCP流套接字编程 API 介绍 TCP回显式服务器 Scanner 的多种使用方式 PrintWriter 的多种使用方式 TCP客户端 3. TCP 服务器中引入多线程 结尾 前言 各位读者大家好,今天笔者继续更新socket套接字的下半部分…...

Apache SeaTunnel 引擎深度解析:原理、技术与高效实践

Apache SeaTunnel 作为新一代高性能分布式数据集成平台&#xff0c;其核心引擎设计融合了现代大数据处理架构的精髓。 Apache SeaTunnel引擎通过分布式架构革新、精细化资源控制及企业级可靠性设计&#xff0c;显著提升了数据集成管道的执行效率与运维体验。其模块化设计允许用…...

深入理解 Maven 循环依赖问题及其解决方案

在 Java 开发领域&#xff0c;Maven 作为主流构建工具极大简化了依赖管理和项目构建。然而**循环依赖&#xff08;circular dependency&#xff09;**问题仍是常见挑战&#xff0c;轻则导致构建失败&#xff0c;重则引发类加载异常和系统架构混乱。 本文将从根源分析循环依赖的…...

pytest中的元类思想与实战应用

在Python编程世界里&#xff0c;元类是一种强大而高级的特性&#xff0c;它能在类定义阶段深度定制类的创建与行为。而pytest作为热门的测试框架&#xff0c;虽然没有直接使用元类&#xff0c;但在设计机制上&#xff0c;却暗含了许多与元类思想相通的地方。接下来&#xff0c;…...

前端生成UUID

UUID(Universally Unique Identifier)是一种在分布式系统中广泛使用的标识符,具有全球唯一性。在前端开发中,生成可靠的UUID对于数据追踪、会话管理、缓存键生成等场景至关重要。接下来将深入探讨UUID的实现原理、前端生成方案及最佳实践。 一、UUID标准与版本 1. UUID结构…...

玩客云WS1608控制LED灯的颜色

玩客云WS1608控制LED灯的颜色 玩客云设备有个红、绿、蓝三色led灯&#xff0c;在刷入armbian系统以后&#xff0c;这个灯的颜色就会显示异常&#xff0c;往往是一直显示红色。 如果要自动动手调整led灯的颜色&#xff0c;控制命令如下&#xff08;需要root用户执行&#xff0…...

实验三 企业网络搭建及应用

实验三 企业网络搭建及应用 一、实验目的 1.掌握企业网络组建方法。 2.掌握企业网中常用网络技术配置方法。 二、实验描述 某企业设有销售部、市场部、技术部和财务部四个部门。公司内部网络使用二层交换机作为用户的接入设备。为了使网络更加稳定可靠&#xff0c;公司决定…...

顶会新热门:机器学习可解释性

&#x1f9c0;机器学习模型的可解释性一直是研究的热点和挑战之一&#xff0c;同样也是近两年各大顶会的投稿热门。 &#x1f9c0;这是因为模型的决策过程不仅需要高准确性&#xff0c;还需要能被我们理解&#xff0c;不然我们很难将它迁移到其它的问题中&#xff0c;也很难进…...

ReactJS 中的 JSX工作原理

文章目录 前言✅ 1. JSX 是什么&#xff1f;&#x1f527; 2. 编译后的样子&#xff08;核心机制&#xff09;&#x1f9f1; 3. React.createElement 做了什么&#xff1f;&#x1f9e0; 4. JSX 与组件的关系&#x1f504; 5. JSX 到真实 DOM 的过程&#x1f4d8; 6. JSX 与 Fr…...

《STL--stack 和 queue 的使用及其底层实现》

引言&#xff1a; 上次我们学习了容器list的使用及其底层实现&#xff0c;相对来说是比较复杂的&#xff0c;今天我们要学习的适配器stack和queue与list相比就简单很多了&#xff0c;下面我们就开始今天的学习&#xff1a; 一&#xff1a;stack&#xff08;后进先出&#xff…...

ArcGIS Pro 3.4 二次开发 - 地理处理

环境:ArcGIS Pro SDK 3.4 + .NET 8 文章目录 地理处理1 通用1.1 如何执行模型工具1.2 设置地理处理范围环境1.3 在 Geoprocessing 窗格中打开脚本工具对话框1.4 打开特定工具的地理处理工具窗格1.5 获取地理处理项目项1.6 阻止通过GP创建的特征类自动添加到地图中1.7 GPExecut…...

基于springboot的医护人员排班系统设计与实现(源码+文档+部署讲解)

技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文…...

Asp.Net Core FluentValidation校验框架

文章目录 前言一、使用步骤1.安装 NuGet 包2.创建模型3.创建验证器4.配置 Program.cs5.创建控制器6.测试结果 二、常见问题及注意事项三、性能优化建议总结 前言 FluentValidation 是一个流行的 .NET 库&#xff0c;用于构建强类型的验证规则。它通常用于验证领域模型、DTO等对…...

CRISPR-Cas系统的小型化研究进展-文献精读137

Progress in the miniaturization of CRISPR-Cas systems CRISPR-Cas系统的小型化研究进展 摘要 CRISPR-Cas基因编辑技术由于其简便性和高效性&#xff0c;已被广泛应用于生物学、医学、农学等领域的基础与应用研究。目前广泛使用的Cas核酸酶均具有较大的分子量&#xff08;通…...

利用python工具you-get下载网页的视频文件

有时候我们可能在一个网站看到一个视频&#xff08;比如B站&#xff09;&#xff0c;想下载&#xff0c;但是页面没有下载视频的按钮。这时候&#xff0c;我们可以借助python工具you-get来实现下载功能。下面简要说下步骤 &#xff08;一&#xff09;因为使用的是python工具&a…...

Wi-Fi 切换 5G 的时机

每天都希望 Wi-Fi 在我离开信号覆盖范围时能尽快切到 5G&#xff0c;但每次它都能坚挺到最后半格信号&#xff0c;我却连看个天气预报都看不了…我不得不手工关闭 Wi-Fi&#xff0c;然后等走远了之后再打开&#xff0c;如此反复&#xff0c;不厌其烦。 早上出门上班&#xff0c…...

【请关注】各类数据库优化,抓大重点整改,快速优化空间mysql,Oracle,Neo4j等

各类数据库优化&#xff0c;抓大重点整改&#xff0c;快速优化&#xff0c;首先分析各数据库查询全部表的空间大小及记录条数的语句&#xff1a; MySQL -- 查看所有表的空间大小 SELECT TABLE_SCHEMA AS 数据库名, TABLE_NAME AS 表名, ENGINE AS 存储引擎, CONCAT(ROUND(DAT…...

Mybatis Plus JSqlParser解析sql语句及JSqlParser安装步骤

MyBatis Plus 整合 JSqlParser 进行 SQL 解析的实现方案&#xff0c;主要包括环境配置和具体应用。通过 Maven 添加mybatis-plus-core 和 jsqlparser 依赖后&#xff0c;可用 CCJSqlParserUtil 解析 SQL 语句&#xff0c;支持对 SELECT、UPDATE 等语句的语法树分析和重构。技术…...

React从基础入门到高级实战:React 高级主题 - 性能优化:深入探索与实践指南

React 性能优化&#xff1a;深入探索与实践指南 引言 在现代Web开发中&#xff0c;尤其是2025年的技术环境下&#xff0c;React应用的性能优化已成为开发者不可忽视的核心课题。随着用户对应用速度和体验的要求日益提高&#xff0c;React应用的规模和复杂性不断增加&#xff…...

负载均衡群集---Haproxy

目录 一、HAproxy 一、概念 二、核心作用 三、主要功能特性 四、应用场景 五、优势与特点 二、 案例分析 1. 案例概述 2. 案例前置知识点 &#xff08;1&#xff09;HTTP 请求 &#xff08;2&#xff09;负载均衡常用调度算法 &#xff08;3&#xff09;常见的 web …...

2025年5月个人工作生活总结

本文为 2025年5月工作生活总结。 研发编码 一个项目的临时记录 月初和另一项目同事向业主汇报方案&#xff0c;两个项目都不满意&#xff0c;后来领导做了调整&#xff0c;将项目合并&#xff0c;拆分了好几大块。原来我做的一些工作&#xff0c;如数据库、中间件等&#xff…...

【stm32开发板】单片机最小系统原理图设计

一、批量添加网络标签 可以选择浮动工具中的N&#xff0c;单独为引脚添加网络标签。 当芯片引脚非常多的时候&#xff0c;选中芯片&#xff0c;右键选择扇出网络标签/非连接标识 按住ctrl键即可选中多个引脚 点击将引脚名称填入网络名 就完成了引脚标签的批量添加 二、电源引…...

实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.2 R语言解题

本文是实验设计与分析&#xff08;第6版&#xff0c;Montgomery著&#xff0c;傅珏生译) 第5章析因设计引导5.7节思考题5.2 R语言解题。主要涉及方差分析&#xff0c;正态假设检验&#xff0c;残差分析&#xff0c;交互作用。 dataframe<-data.frame( Surfacec(74,64,60,92…...