小白的进阶之路系列之九----人工智能从初步到精通pytorch综合运用的讲解第二部分
张量是PyTorch中的核心数据抽象。这个交互式笔记本提供了一个深入的介绍torch. Tensor 类.,
首先,让我们导入PyTorch模块。我们还将添加Python的数学模块来简化一些示例。
import torch
import math
创建张量
创建张量最简单的方法是调用torch.empty():
x = torch.empty(3, 4)
print(type(x))
print(x)
输出为:
<class 'torch.Tensor'>
tensor([[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]])
让我们总结一下刚才的内容:
-
我们使用火炬模块附带的众多工厂方法之一创建了一个张量。
-
张量本身是二维的,有3行4列。
-
返回的对象类型是torch。Tensor,它是torch.FloatTensor的别名;默认情况下,PyTorch张量使用32位浮点数填充。(下面是关于数据类型的更多信息。)
-
在打印张量时,您可能会看到一些看起来随机的值。torch.empty()调用为张量分配内存,但没有用任何值初始化它-因此您看到的是分配时内存中的内容。
关于张量及其维数和术语的简要说明:
-
你有时会看到一个一维张量叫做矢量。
-
同样地,二维张量通常被称为矩阵。
-
任何二维以上的东西通常都叫做张量。
通常情况下,您需要用某个值初始化张量。常见的情况是全零、全一或随机值,torch模块为所有这些提供了工厂方法:
zeros = torch.zeros(2, 3)
print(zeros)ones = torch.ones(2, 3)
print(ones)torch.manual_seed(1729)
random = torch.rand(2, 3)
print(random)
输出为:
tensor([[0., 0., 0.],[0., 0., 0.]])
tensor([[1., 1., 1.],[1., 1., 1.]])
tensor([[0.3126, 0.3791, 0.3087],[0.0736, 0.4216, 0.0691]])
工厂方法所做的都是你所期望的——我们有一个全是0的张量,另一个全是1的张量,还有一个是0到1之间的随机值。
随机张量和播种
说到随机张量,你注意到它之前对torch.manual_seed()的调用了吗?用随机值初始化张量(比如模型的学习权值)是很常见的,但有时——尤其是在研究环境中——你需要对结果的可重复性有一定的保证。手动设置随机数生成器的种子是这样做的。让我们仔细看看:
torch.manual_seed(1729)
random1 = torch.rand(2, 3)
print(random1)random2 = torch.rand(2, 3)
print(random2)torch.manual_seed(1729)
random3 = torch.rand(2, 3)
print(random3)random4 = torch.rand(2, 3)
print(random4)
输出为:
tensor([[0.3126, 0.3791, 0.3087],[0.0736, 0.4216, 0.0691]])
tensor([[0.2332, 0.4047, 0.2162],[0.9927, 0.4128, 0.5938]])
tensor([[0.3126, 0.3791, 0.3087],[0.0736, 0.4216, 0.0691]])
tensor([[0.2332, 0.4047, 0.2162],[0.9927, 0.4128, 0.5938]])
您应该在上面看到的是random1和random3携带相同的值,random2和random4也是如此。手动设置RNG的种子会重置它,所以在大多数情况下,基于随机数的相同计算应该会提供相同的结果。
有关更多信息,请参阅PyTorch关于再现性的文档。
张量的形状
通常,当你在两个或更多张量上执行操作时,它们需要具有相同的形状——也就是说,在每个维度上具有相同数量的维数和相同数量的单元。为此,我们使用了torch.*_like()方法:
x = torch.empty(2, 2, 3)
print(x.shape)
print(x)empty_like_x = torch.empty_like(x)
print(empty_like_x.shape)
print(empty_like_x)zeros_like_x = torch.zeros_like(x)
print(zeros_like_x.shape)
print(zeros_like_x)ones_like_x = torch.ones_like(x)
print(ones_like_x.shape)
print(ones_like_x)rand_like_x = torch.rand_like(x)
print(rand_like_x.shape)
print(rand_like_x)
输出为:
torch.Size([2, 2, 3])
tensor([[[0., 0., 0.],[0., 0., 0.]],[[0., 0., 0.],[0., 0., 0.]]])
torch.Size([2, 2, 3])
tensor([[[0., 0., 0.],[0., 0., 0.]],[[0., 0., 0.],[0., 0., 0.]]])
torch.Size([2, 2, 3])
tensor([[[0., 0., 0.],[0., 0., 0.]],[[0., 0., 0.],[0., 0., 0.]]])
torch.Size([2, 2, 3])
tensor([[[1., 1., 1.],[1., 1., 1.]],[[1., 1., 1.],[1., 1., 1.]]])
torch.Size([2, 2, 3])
tensor([[[0.6128, 0.1519, 0.0453],[0.5035, 0.9978, 0.3884]],[[0.6929, 0.1703, 0.1384],[0.4759, 0.7481, 0.0361]]])
上面代码单元中的第一个新内容是在张量上使用.shape属性。这个属性包含了张量每个维度的范围列表——在我们的例子中,x是一个形状为2 x 2 x 3的三维张量。
下面,我们调用。empty_like()、。zeros_like()、。ones_like()和。rand_like()方法。使用.shape属性,我们可以验证这些方法中的每一个都返回具有相同维度和范围的张量。
最后一种创建张量的方法是直接从PyTorch集合中指定它的数据:
some_constants = torch.tensor([[3.1415926, 2.71828], [1.61803, 0.0072897]])
print(some_constants)some_integers = torch.tensor((2, 3, 5, 7, 11, 13, 17, 19))
print(some_integers)more_integers = torch.tensor(((2, 4, 6), [3, 6, 9]))
print(more_integers)
输出为:
tensor([[3.1416, 2.7183],[1.6180, 0.0073]])
tensor([ 2, 3, 5, 7, 11, 13, 17, 19])
tensor([[2, 4, 6],[3, 6, 9]])
如果你已经在Python元组或列表中拥有数据,使用torch.tensor()是创建张量最直接的方法。如上所示,嵌套集合将产生一个多维张量。
张量数据类型
设置张量的数据类型有两种方法:
a = torch.ones((2, 3), dtype=torch.int16)
print(a)b = torch.rand((2, 3), dtype=torch
相关文章:
小白的进阶之路系列之九----人工智能从初步到精通pytorch综合运用的讲解第二部分
张量是PyTorch中的核心数据抽象。这个交互式笔记本提供了一个深入的介绍torch. Tensor 类., 首先,让我们导入PyTorch模块。我们还将添加Python的数学模块来简化一些示例。 import torch import math创建张量 创建张量最简单的方法是调用torch.empty(): x = torch.empty(…...

深度学习与神经网络 前馈神经网络
1.神经网络特征 无需人去告知神经网络具体的特征是什么,神经网络可以自主学习 2.激活函数性质 (1)连续并可导(允许少数点不可导)的非线性函数 (2)单调递增 (3)函数本…...

NLP学习路线图(十四):词袋模型(Bag of Words)
在自然语言处理(NLP)的广阔天地中,词袋模型(Bag of Words, BoW) 宛如一块历经岁月沉淀的基石。它虽非当今最耀眼的明星,却为整个领域奠定了至关重要的基础,深刻影响了我们让计算机“理解”文本的…...
Oracle数据库事务学习
目录 一、什么是事务,事务的作用是什么 二、事务的四大特性(ACID) 1. 原子性(Atomicity) 2. 一致性(Consistency) 3. 隔离性(Isolation) 4. 持久性(Durability) 三、关于锁的概念——表锁、行锁、死锁、乐观/悲观锁、 1.行锁 2.表锁 3.死锁 4.乐观锁 5.…...
MySQL 全量 增量备份与恢复
目录 前言 一、MySQL 数据库备份概述 1. 数据备份的重要性 2. 数据库备份类型 2.1 从物理与逻辑的角度分类 2.2 从数据库的备份策略角度分类 3. 常见的备份方法 二、数据库完全备份操作 1. 物理冷备份与恢复 1.1 备份数据库 1.2 恢复数据库 2. mysqldump 备份与恢复…...
【仿生机器人系统设计】涉及到的伦理与安全问题
随着材料科学、人工智能与生物工程学的融合突破,仿生机器人正从科幻走向现实。它们被寄予厚望——在医疗康复、老年照护、极端环境作业甚至社交陪伴等领域释放巨大价值。然而,当机器无限趋近于“生命体”,其设计过程中潜伏的伦理与安全迷宫便…...
NodeJS全栈WEB3面试题——P5全栈集成与 DApp 构建
5.1 如何实现一个完整的 Web3 登录流程(前端 后端)? ✅ 核心机制:钱包签名 后端验签 Web3 登录是基于“消息签名”来验证用户链上身份,而非传统用户名/密码。 💻 前端(使用 MetaMask&#…...

鸿蒙进阶——Mindspore Lite AI框架源码解读之模型加载详解(一)
文章大纲 引言一、模型加载概述二、核心数据结构三、模型加载核心流程 引言 Mindspore 是一款华为开发开源的AI推理框架,而Mindspore Lite则是华为为了适配在移动终端设备上运行专门定制的版本,使得我们可以在OpenHarmony快速实现模型加载和推理等功能&…...

【数据结构】图论核心算法解析:深度优先搜索(DFS)的纵深遍历与生成树实战指南
深度优先搜索 导读:从广度到深度,探索图的遍历奥秘一、深度优先搜索二、算法思路三、算法逻辑四、算法评价五、深度优先生成树六、有向图与无向图结语:深潜与回溯,揭开图论世界的另一面 导读:从广度到深度,…...
Mysql数据库 索引,事务
Mysql数据库 索引,事务 一.索引 简介 索引是数据库中用于提高查询效率的一种数据结构,它通过预先排序和存储特定列的值,帮助数据库快速定位符合条件的数据行,避免全表扫描。以下是关于索引的核心简介: 1. 核心作用…...

RESTful APInahamcon Fuzzies-write-up
RESTful API 路径详解 RESTful API(Representational State Transfer)是一种 基于 HTTP 协议的 API 设计风格,它通过 URL 路径 和 HTTP 方法(GET、POST、PUT、DELETE 等)来定义资源的访问方式。它的核心思想是 将数据…...
安装DockerDocker-Compose
Docker 1、换掉关键文件 vim /etc/yum.repos.d/CentOS-Base.repo ▽ [base] nameCentOS-$releasever - Base - Mirrors Aliyun baseurlhttp://mirrors.aliyun.com/centos/$releasever/os/$basearch/ gpgcheck1 enabled1 gpgkeyhttp://mirrors.aliyun.com/centos/RPM-GPG-KEY-C…...

2025年机械化设计制造与计算机工程国际会议(MDMCE 2025)
2025年机械化设计制造与计算机工程国际会议(MDMCE 2025) 2025 International Conference on Mechanized Design, Manufacturing, and Computer Engineering 一、大会信息 会议简称:MDMCE 2025 大会地点:中国贵阳 审稿通知&#…...
Java生态中的NLP框架
Java生态系统中提供了多个强大的自然语言处理(NLP)框架,以下是主要的NLP框架及其详细说明: 1、Apache OpenNLP 简介:Apache OpenNLP是Apache软件基金会的开源项目,提供了一系列常用的NLP工具。 主要功能: …...
NVM,Node.Js 管理工具
node_mirror: https://npmmirror.com/mirrors/node/ npm_mirror: https://npmmirror.com/mirrors/npm/ 一、什么是 NVM? NVM 是一个命令行工具,允许你在同一台机器上安装、切换和管理多个 Node.js 版本,解决项目间版本冲突问题。 二、安装 …...

Jmeter逻辑控制器、定时器
目录 一、Jmeter逻辑控制器 ①IF(如果)控制器 作用: 位置: 参数介绍: 步骤: ②循环控制器 作用: 位置: 步骤: 线程组属性VS循环控制器 ③ForEach控制器 作用: 位置&am…...
每日八股文6.2
每日八股-6.2 Go1.GMP调度原理(这部分多去看看golang三关加深理解)2.GC(同样多去看看golang三关加深理解)3.闭包4.go语言函数是一等公民是什么意思5.sync.Mutex和sync.RWMutex6.sync.WaitGroup7.sync.Cond8.sync.Pool9.panic和rec…...

R3GAN利用配置好的Pytorch训练自己的数据集
简介 简介:这篇论文挑战了"GANs难以训练"的广泛观点,通过提出一个更稳定的损失函数和现代化的网络架构,构建了一个简洁而高效的GAN基线模型R3GAN。作者证明了通过合适的理论基础和架构设计,GANs可以稳定训练并达到优异性能。 论文题目:The GAN is dead; long l…...

吴恩达机器学习笔记(1)—引言
目录 一、欢迎 二、机器学习是什么 三、监督学习 四、无监督学习 一、欢迎 机器学习是当前信息技术领域中最令人兴奋的方向之一。在这门课程中,你不仅会学习机器学习的前沿知识,还将亲手实现相关算法,从而深入理解其内部机理。 事实上&…...
信贷风控规则策略累计增益lift测算
在大数据风控业务实践过程中,目前业内主要还是采用规则叠加的办法做策略,但是会遇到一些问题: 1.我们有10条规则,我上了前7条后,后面3条的绝对风险增益是多少? 2.我的规则之间应该做排序吗,最重…...

【笔记】Windows 部署 Suna 开源项目完整流程记录
#工作记录 因篇幅有限,所有涉及处理步骤的详细处理办法请参考文末资料。 Microsoft Windows [Version 10.0.27868.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗…...

【Elasticsearch】Elasticsearch 核心技术(一):索引
Elasticsearch 核心技术(一):索引 1.索引的定义2.索引的命名规范3.索引的增、删、改、查3.1 创建索引3.1.1 创建空索引 3.2 删除索引3.3 文档操作3.3.1 添加/更新文档(指定ID)3.3.2 添加文档(自动生成ID&am…...
AudioTrack的理解
采样率说的是一秒钟采样多少点 波形频率说的是一个采样周期内有多少个波形 pcm编码说的是 16 还是8 直接决定write的时候使用short还是byte 一、初始化配置 参数设定 需定义音频格式、采样率及缓冲区大小,确保符合硬件支持范围 // 音频参数配置 int sample…...
HTTP请求与HTTP响应介绍及其字段
HTTP请求 请求行:请求行主要包含请求方法、请求URI(统一资源标识符)和HTTP协议版本。例如: GET /index.html HTTP/1.1 请求头(Headers):包含客户端的元数据,为服务器提供了额外信息…...

Fullstack 面试复习笔记:操作系统 / 网络 / HTTP / 设计模式梳理
Fullstack 面试复习笔记:操作系统 / 网络 / HTTP / 设计模式梳理 面试周期就是要根据JD调整准备内容(挠头),最近会混合复习针对全栈这块的内容,目前是根据受伤的JD,优先选择一些基础的操作系统、Java、Nod…...

中科院报道铁电液晶:从实验室突破到多场景应用展望
2020年的时候,相信很多关注科技前沿的朋友都注意到,中国科学院一篇报道聚焦一项有望改写显示产业格局的新技术 —— 铁电液晶(FeLC)。这项被业内称为 "下一代显示核心材料" 的研究,究竟取得了哪些实质性进展…...

智慧政务标准规范介绍:构建高效、协同的政务信息体系
在当今信息化快速发展的时代,智慧政务作为政府数字化转型的重要方向,正逐步改变着政府管理和服务的方式。为了确保智慧政务系统的建设能够有序、高效地进行,国家制定了一系列标准规范,其中GB∕T 21062系列标准《政务信息资源交换体…...
6个月Python学习计划 Day 12 - 字符串处理 文件路径操作
第一周 Day 1 - Python 基础入门 & 开发环境搭建 Day 2 - 条件判断、用户输入、格式化输出 Day 3 - 循环语句 range 函数 Day 4 - 列表 & 元组基础 Day 5 - 字典(dict)与集合(set) Day 6 - 综合实战:学生信息…...
CSS篇-3
1. CSS 中哪些样式可以继承?哪些不可以继承? 可继承的样式: 与字体相关的样式,如:font-size、font-family、color 列表样式:list-style(如 UL、OL 的 list-style-type) 不可继承的样式: 与布局和尺寸相关的样式,如:border、padding、margin、width、height 总结: …...
Unity使用Lua框架和C#框架开发游戏的区别
在Unity中使用Lua框架和C#框架开发游戏有显著的区别,主要体现在性能、开发效率、热更新能力、维护成本等方面。 1. 语言类型与设计目标 维度LuaC#类型动态类型、解释型脚本语言静态类型、编译型面向对象语言设计初衷轻量级嵌入、配置和扩展宿主程序通用开发&#…...