当前位置: 首页 > article >正文

4.RV1126-OPENCV 图像轮廓识别

一.图像识别API

1.图像识别作用

        它常用于视觉任务、目标检测、图像分割等等。在 OPENCV 中通常使用 Canny
函数、findContours 函数、drawContours 函数
结合在一起去做轮廓的形检测。

2.常用的API 

  • findContours 函数:用于寻找图片的轮廓,并把所有的数据存储在向量里面                    

        CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,OutputArray hierarchy, int mode,int method, Point offset = Point());

    第一个参数:image 输入的二值图像,这个图像通常是用在边缘检测、阈值处理等等
    第二个参数:contours 输出的轮廓集合,每一个轮廓都是由点组成,通常用vector<vector<Point>>来表示

    第三个参数:hierarchy 输出的轮廓层次结构,这通常表示轮廓之间的父子关系,这个是可选参数,通常用 vector<Vec4i> hierarchy来表示。比方说,第 i 个轮廓,hierarchy[i][0]、hierarchy[i][1]、hierarchy[i][2]、hierarchy[i][3], 依次为第 i 个轮廓[Next、Pervious、First_Child,Parent], 这表示的是相同等级下的下一轮廓、前一轮廓,第一个子轮廓和父轮廓的索引号。若轮廓 i 没有下一个,前一个或者父级轮廓,则层次相应的元素是负数。如下图:

    第四个参数:mode 轮廓检索模式,通常有以下选项,分别是:RETR_EXTERNAL(只检测最外层轮廓)、RETR_LIST(检测所有轮廓,包括内围、外围轮廓,但都是同等级的)、RETR_CCOMP(检测所有轮廓,但是所有的轮廓只建立两个等级关系,一个外层,一个内层(不管内层有多少个,都属于内层))、RETR_TREE(检测所有轮廓并建立轮廓树,这个模式下外围轮廓包含内层轮廓,内层还可以继续嵌套)。

    第 五 个 参 数 : method 轮 廓 近 似 方 法 , 通 常 有 以 下 的 几 种 方 法 , 分 别 是 CHAIN_APPROX_NONE( 存 储 所 有 顶 点 ) 、CHAIN_APPROX_SIMPLE(仅存储轮廓的拐点信息,并把所有轮廓拐点处的点保存到向量里面)、CHAIN_APPROX_TC89_L1(使用TEH_CHAIN 近似算法)。
    第六个参数:offset 轮廓点偏移量,默认(0,0)

    • drawContours 函数:用于绘制图像的轮廓,配合findContours 函数使用,用findContours 函数获取轮廓,用drawContours 函数画轮廓。

             CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,int contourIdx, const Scalar& color,int thickness = 1, int lineType = LINE_8,InputArray hierarchy = noArray(),int maxLevel = INT_MAX, Point offset = Point() );

    第一个参数:image 输出图像,即绘制轮廓后的图像
    第二个参数:contours 轮廓的集合,它是由一系列的点组成
    第三个参数:contourIdx、轮廓索引数组,指定要绘制哪些轮廓
    第四个参数:contourColor,轮廓颜色,使用 Scalar 类型表示
    第五个参数:thickness,轮廓线宽,默认 1
    第六个参数:lineType ,轮廓线类型,默认为 LINE_8

    第七个参数:hierarchy ,轮廓层次结构,用于绘制轮廓的父子关系。默认为 noArray()
    第八个参数:maxLevel ,表示绘制轮廓的最大层级数量。若 maxLevel 为 0,则只绘制指定的轮廓;若 maxLevel 为 1,则绘制轮廓极其所有嵌套轮廓;若 maxLevel 为 2,则绘制轮廓、所有嵌套轮廓、所有嵌套到嵌套的轮廓。
    第九个参数:轮廓点的偏移量,默认为(0,0) 

    • Canny 函数:用于边缘检测计算。效果如下:

             工作原理:就是一系类数学处理方法。高斯滤波(将图像转换为灰度图像,高斯滤波作用是平滑图像,让 Canny 检测的时候准确率更高)、梯度强度和方向的计算(计算图像中每个像素的强度和方向、强度表示像素点的边缘强度、梯度表示的是边缘方向这里的梯度需要用到 sobel 因子)、非极大抑制(经过 NMS 操作后,会除去一些不是边缘的像素点)、双阈值处理(给出一个阈值,若超过这个阈值的边缘则会被保留)、边缘链接(经过双阈值处理过后,强边缘则会留下来,弱边缘则会被抑制,并会把所有的强边缘全部连接起来)。

             工作原理白话文:把3通道图片(也就是彩色图片)转化成双通道图片(也就是灰色图像),然后用高斯滤波去除细小杂物让它更好识别轮廓;梯度强度和方向的计算,就是不同程度扫描轮廓,扫描很多轮廓;非极大抑制,去除边边角角不是边缘的像素点;双阈值处理,就是在之前扫描不同程度轮廓上设置两个阈值(Max,Min),大于Max值被认为是轮廓保留下来,小于Min被认为不是轮廓去除掉,在两值中间的是边缘保留,不是去掉;边缘链接,就是一个完整轮廓。

            CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,double threshold1, double threshold2,int apertureSize = 3, bool L2gradient = false ); 

    第一个参数:image 输入的图像,这个图像一定要单通道灰度图
    第二个参数:edges 输出的边缘图像,这个图像也必须是单通道黑白图
    第三个参数:threshold1 第一个滞后性阈值,低阈值,小于低阈值则认为是弱边缘,就是需要抛弃的边缘。
    第四个参数:threshold2 第二个滞后性阈值,高阈值,大于高阈值被认为强边缘,需要保留的边缘
    第五个参数:apertureSize 指的是 Sobel 算子大小,这个值默认为 3,代表的是 3*3 的矩阵大小。
    第六个参数:L2gradient 是计算图像梯度幅度值的情况,这个值默认为 False;若选择 True,则使用更精确的 L2 范数进行计算

    二. 代码实战扫描物体轮廓

    1.扫描轮廓步骤

            分别是 imread 读取图片(这个图片默认是 3 通道)、利用 cvtColor 把 8VU3 的三通道图片转换成灰度图(8VU1)、调用 Canny 对灰度图像进行边缘检测、调用 findContours 去查找轮廓、循环轮廓数量然后调用 drawContours 进行画框操作。

    2.代码

    #include <opencv2/opencv.hpp>
    #include <opencv2/dnn.hpp>
    #include <opencv2/imgcodecs.hpp>
    #include <opencv2/imgproc.hpp>
    #include <iostream>using namespace cv;
    using namespace std;int main()
    {//读取图片Mat img = imread("zjl.jpg");//彩色图片转化灰度图片Mat imgGray;cvtColor(img, imgGray, COLOR_RGB2GRAY);//灰度图片边缘检测轮廓Mat imgCanny;Canny(imgGray, imgCanny, 25, 75); //Canny对图像进行边缘检测,弱阈值25,强阈值75//查询轮廓vector<vector<Point>> contours; //定义轮廓vector<Vec4i> hierarchy; //定义层次结构findContours(imgCanny, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_NONE); //查询轮廓,RETR_EXTERNAL表示只检测外部轮廓,CHAIN_APPROX_NONE表示存储所有的轮廓点//绘制轮廓Mat drawing = Mat::zeros(imgCanny.size(), CV_8UC3);//创建一个空白图像,用于绘制轮廓for (int i = 0; i < contours.size(); i++)   //遍历所有轮廓{Scalar color = Scalar(255, 255, 0); //随机生成颜色drawContours(drawing, contours, i, color, 1, 8, hierarchy); //对图像轮廓进行画框}//显示图像imwrite("zjl1.jpg", drawing);return 0;
    }

    3.效果

    相关文章:

    4.RV1126-OPENCV 图像轮廓识别

    一.图像识别API 1.图像识别作用 它常用于视觉任务、目标检测、图像分割等等。在 OPENCV 中通常使用 Canny 函数、findContours 函数、drawContours 函数结合在一起去做轮廓的形检测。 2.常用的API findContours 函数&#xff1a;用于寻找图片的轮廓&#xff0c;并把所有的数…...

    WEB3——开发者怎么查看自己的合约日志记录

    在区块链中查看合约的日志信息&#xff08;也叫事件 logs&#xff09;&#xff0c;主要有以下几种方式&#xff0c;具体方法依赖于你使用的区块链平台&#xff08;如 Ethereum、BSC、Polygon 等&#xff09;和工具&#xff08;如 Etherscan、web3.js、ethers.js、Hardhat 等&am…...

    TDengine 集群容错与灾备

    简介 为了防止数据丢失、误删操作&#xff0c;TDengine 提供全面的数据备份、恢复、容错、异地数据实时同步等功能&#xff0c;以保证数据存储的安全。本节简要说明 TDengine 中的容错与灾备。 容错 TDengine 支持 WAL 机制&#xff0c;实现数据的容错能力&#xff0c;保证数…...

    MG影视登录解锁永久VIP会员 v8.0 支持手机电视TV版影视直播软件

    MG影视登录解锁永久VIP会员 v8.0 支持手机电视TV版影视直播软件 MG影视App电视版是一款资源丰富、免费便捷、且专为大屏优化的影视聚合应用&#xff0c;聚合海量资源&#xff0c;畅享电视直播&#xff0c;是您电视盒子和…...

    如何成为一名优秀的产品经理(自动驾驶)

    一、 夯实核心基础 深入理解智能驾驶技术栈&#xff1a; 感知&#xff1a; 摄像头、雷达&#xff08;毫米波、激光雷达&#xff09;、超声波传感器的工作原理、优缺点、融合策略。了解目标检测、跟踪、SLAM等基础算法概念。 定位&#xff1a; GNSS、IMU、高精地图、轮速计等定…...

    BAT脚本编写详细教程

    目录 第一部分:BAT脚本简介第二部分:创建和运行BAT脚本第三部分:基本命令和语法第四部分:变量使用第五部分:流程控制第六部分:函数和子程序第七部分:高级技巧第八部分:实用示例第一部分:BAT脚本简介 BAT脚本(批处理脚本)是Windows操作系统中的一种脚本文件,扩展名…...

    快速了解 GO之接口解耦

    更多个人笔记见&#xff1a; &#xff08;注意点击“继续”&#xff0c;而不是“发现新项目”&#xff09; github个人笔记仓库 https://github.com/ZHLOVEYY/IT_note gitee 个人笔记仓库 https://gitee.com/harryhack/it_note 个人学习&#xff0c;学习过程中还会不断补充&…...

    【多线程初阶】内存可见性问题 volatile

    文章目录 再谈线程安全问题内存可见性问题可见性问题案例编译器优化 volatileJava内存模型(JMM) 再谈线程安全问题 如果多线程环境下代码运行的结果是符合我们预期的,即在单线程环境应该有的结果,则说这个程序是线程安全的,反之,多线程环境中,并发执行后,产生bug就是线程不安全…...

    C++ 类模板三参数深度解析:从链表迭代器看类型推导与实例化(为什么迭代器类模版使用三参数?实例化又会是怎样?)

    本篇主要续上一篇的list模拟实现遇到的问题详细讲解&#xff1a;<传送门> 一、引言&#xff1a;模板参数的 "三角锁钥" 在 C 双向链表实现中&#xff0c;__list_iterator类模板的三个参数&#xff08;T、Ref、Ptr&#xff09;如同精密仪器的调节旋钮&#x…...

    MySQL强化关键_018_MySQL 优化手段及性能分析工具

    目 录 一、优化手段 二、SQL 性能分析工具 1.查看数据库整体情况 &#xff08;1&#xff09;语法格式 &#xff08;2&#xff09;说明 2.慢查询日志 &#xff08;1&#xff09;说明 &#xff08;2&#xff09;开启慢查询日志功能 &#xff08;3&#xff09;实例 3.s…...

    ASP.NET MVC添加模型示例

    ASP.NET MVC高效构建Web应用ASP.NET MVC 我们总在谈“模型”&#xff0c;那到底什么是模型&#xff1f;简单说来&#xff0c;模型就是当我们使用软件去解决真实世界中各种实际问题的时候&#xff0c;对那些我们关心的实际事物的抽象和简化。比如&#xff0c;我们在软件系统中设…...

    【Part 3 Unity VR眼镜端播放器开发与优化】第二节|VR眼镜端的开发适配与交互设计

    文章目录 《VR 360全景视频开发》专栏Part 3&#xff5c;Unity VR眼镜端播放器开发与优化第一节&#xff5c;基于Unity的360全景视频播放实现方案第二节&#xff5c;VR眼镜端的开发适配与交互设计一、Unity XR开发环境与设备适配1.1 启用XR Plugin Management1.2 配置OpenXR与平…...

    第1天:认识RNN及RNN初步实验(预测下一个数字)

    RNN&#xff08;循环神经网络&#xff09; 是一种专门设计用来处理序列数据的人工神经网络。它的核心思想是能够“记住”之前处理过的信息&#xff0c;并将其用于当前的计算&#xff0c;这使得它非常适合处理具有时间顺序或上下文依赖关系的数据。 核心概念&#xff1a;循环连…...

    全文索引详解及适用场景分析

    全文索引详解及适用场景分析 1. 全文索引基本概念 1.1 定义与核心原理 全文索引(Full-Text Index)是一种特殊的数据库索引类型,专门设计用于高效处理文本数据的搜索需求。与传统的B树索引不同,全文索引不是基于精确匹配,而是通过建立倒排索引(Inverted Index)结构来实现对…...

    利用DeepSeek编写能在DuckDB中读PostgreSQL表的表函数

    前文实现了UDF和UDAF&#xff0c;还有一类函数是表函数&#xff0c;它放在From 子句中&#xff0c;返回一个集合。DuckDB中已有PostgreSQL插件&#xff0c;但我们可以用pqxx库实现一个简易的只读read_pg()表函数。 提示词如下&#xff1a; 请将libpqxx库集成到我们的程序&#…...

    树莓派安装openwrt搭建软路由(ImmortalWrt固件方案)

    &#x1f923;&#x1f449;我这里准备了两个版本的openwrt安装方案给大家参考使用&#xff0c;分别是原版的OpenWrt固件以及在原版基础上进行改进的ImmortalWrt固件。推荐使用ImmortalWrt固件&#xff0c;当然如果想直接在原版上进行开发也可以&#xff0c;看个人选择。 &…...

    排序算法——详解

    排序算法 &#xff08;冒泡、选择、插入、快排、归并、堆排、计数、桶、基数&#xff09; 稳定性 (Stability): 如果排序算法能保证&#xff0c;当待排序序列中存在值相等的元素时&#xff0c;排序后这些元素的相对次序保持不变&#xff0c;那么该算法就是稳定的。 例如&#…...

    Go整合Redis2.0发布订阅

    Go整合Redis2.0发布订阅 Redis goredis-cli --version redis-cli 5.0.14.1 (git:ec77f72d)Go go get github.com/go-redis/redis/v8package redisimport ("MyKindom-Server-v2.0/com/xzm/core/config/yaml""MyKindom-Server-v2.0/com/xzm/core/config/yaml/po…...

    电子电气架构 --- 如何应对未来区域式电子电气(E/E)架构的挑战?

    我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...

    鸿蒙OS基于UniApp的区块链钱包开发实践:打造支持鸿蒙生态的Web3应用#三方框架 #Uniapp

    基于UniApp的区块链钱包开发实践&#xff1a;打造支持鸿蒙生态的Web3应用 前言 最近在带领团队开发一个支持多链的区块链钱包项目时&#xff0c;我们选择了UniApp作为开发框架。这个选择让我们不仅实现了传统移动平台的覆盖&#xff0c;还成功将应用引入了快速发展的鸿蒙生态…...

    易学探索助手-个人记录(十二)

    近期我完成了古籍处理板块页面升级&#xff0c;补充完成原文、句读、翻译的清空、保存和编辑&#xff08;其中句读仅可修改标点&#xff09;功能&#xff0c;新增原文和句读的繁简体切换功能 一、古籍处理板块整体页面升级 将原来一整个页面呈现的布局改为分栏呈现&#xff0…...

    Windows 账号管理与安全指南

    Windows 账号管理与安全指南 概述 Windows 账号管理是系统安全的基础&#xff0c;了解如何正确创建、管理和保护用户账户对于系统管理员和安全专业人员至关重要。本文详细介绍 Windows 系统中的账户管理命令、隐藏账户创建方法以及安全防护措施。 基础账户管理命令 net use…...

    Python窗体编程技术详解

    文章目录 1. Tkinter简介示例代码优势劣势 2. PyQt/PySide简介示例代码(PyQt5)优势劣势 3. wxPython简介示例代码优势劣势 4. Kivy简介示例代码优势劣势 5. PySimpleGUI简介示例代码优势劣势 技术对比总结选择建议 Python提供了多种实现图形用户界面(GUI)编程的技术&#xff0c…...

    思维链提示:激发大语言模型推理能力的突破性方法

    论文出处&#xff1a; Chain-of-Thought Prompting Elicits Reasoning in Large Language Models 作者&#xff1a; Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, Denny Zhou 机构&#xff1a; Google Research, B…...

    NVMe协议简介之AXI总线更新

    更新AXI4总线知识 AXI4总线协议 AXI4总线协议是由ARM公司提出的一种片内总线协议 &#xff0c;旨在实现SOC中各模块之间的高效可靠的数据传输和管理。AXI4协议具有高性能、高吞吐量和低延迟等优点&#xff0c;在SOC设计中被广泛应用 。随着时间的推移&#xff0c;AXI4的影响不…...

    设计模式——责任链设计模式(行为型)

    摘要 责任链设计模式是一种行为型设计模式&#xff0c;旨在将请求的发送者与接收者解耦&#xff0c;通过多个处理器对象按链式结构依次处理请求&#xff0c;直到某个处理器处理为止。它包含抽象处理者、具体处理者和客户端等核心角色。该模式适用于多个对象可能处理请求的场景…...

    基于Android的医院陪诊预约系统

    博主介绍&#xff1a;java高级开发&#xff0c;从事互联网行业六年&#xff0c;熟悉各种主流语言&#xff0c;精通java、python、php、爬虫、web开发&#xff0c;已经做了六年的毕业设计程序开发&#xff0c;开发过上千套毕业设计程序&#xff0c;没有什么华丽的语言&#xff0…...

    基于Spring Boot 电商书城平台系统设计与实现(源码+文档+部署讲解)

    技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文…...

    【金融基础学习】债券回购方式

    债券回购作为货币市场的重要工具&#xff0c;本质上是一种以债券为抵押的短期资金借贷行为。在银行间市场&#xff0c;质押式回购与**买断式回购*是两种主要形式。 1. 质押式回购(Pledged Repo, RP) – 所有权不转移的短期融资工具 1.1 质押式回购概述 质押式回购是交易双方…...

    第五十九节:性能优化-GPU加速 (CUDA 模块)

    在计算机视觉领域,实时性往往是关键瓶颈。当传统CPU处理高分辨率视频流或复杂算法时,力不从心。本文将深入探索OpenCV的CUDA模块,揭示如何通过GPU并行计算实现数量级的性能飞跃。 一、GPU加速:计算机视觉的必由之路 CPU的强项在于复杂逻辑和低延迟任务,但面对图像处理中高…...