当前位置: 首页 > article >正文

manus对比ChatGPT-Deep reaserch进行研究类论文数据分析!谁更胜一筹?

目录

没有账号,只能挑选一个案例

1、manus的效果

Step-1:直接看结果

Step-2:看看其他文件的细节

Step-3:看最终报告

2、Deep reaserch

3、Deep reaserch进行行业分析

总结一下:


 大家好这里是学术Anan,官网👉AIWritePaper~

没有账号,只能挑选一个案例

        一夜之间被这个用全英文介绍全华班出品的新爆款国产AI产品的小胖刷频。白天还没有切换语言的选项,晚上就加上了。简单看了看团队够成,使用很长实践的Monica创始人也在其中。逐渐可以理解,重心放在海外产品上也无可厚非。

        好了废话不多说了。小编弄不到邀请码,只能通过例子分析了解产品,我们选取的案例就是AR/AI眼镜研究分析这块。在官网有案例,宝子们可以自行查阅。

Image

        核心提示词-当manus开始跑案例的时候我们就可以看到,一个提示词,manus就开始疯狂输出:

        Research articles and industry reports to compile a comprehensive list of AR/AI glasses set to launch in 2024–2025. Organize the data into a detailed table, including brands, product specifications, pricing, core component configurations along with their suppliers, and projected sales volumes.

        研究文章和行业报告,编制一份将于 2024 年至 2025 年推出的 AR/AI 眼镜综合清单。将数据组织成一个详细的表格,包括品牌、产品规格、定价、核心组件配置及其供应商和预计的销量。

        后续我们使用ChatGPT-Deep reaserch跑一遍这个提示词然后总结区别以及各自的优势和劣势。

1、manus的效果

案例-AR/AI眼镜研究

Image

Step-1:直接看结果

        左侧的整体流程其实已经并不陌生了,ChatGPT-o1、DeepSeek-R1都具备这样的流程思考过程。

        其实主要的结果不止右侧的文档,最重要的是过程中的所有文件!本来小编非常看好manus这个流程,是ChatGPT一上来的交互也让我眼前一亮,先卖个关子,后续章节可以看到ChatGPT的反馈!

Image

        这里面包含很多文件,跟昨天分享的不同,这里面没有代码也没有图片,全是数据以及基于数据生成的单项报告。

Image

        最终要的其实是这个todo!里面大致是这次任务编排的一个大纲!类似我们AIWritePaper论文的大纲生成!我们看看这个大纲:

AR/AI 眼镜研究项目 (2024-2025)

Research Tasks

  •  1. 创建 todo 文件

  •  2. 搜索将于 2024-2025 年推出的 AR/AI 眼镜

    •  识别开发 AR/AI 眼镜的主要科技公司和初创公司

    •  查找有关即将推出的 AR/AI 眼镜的最新技术新闻文章

    •  搜索行业报告和市场分析

    •  编制一份所有已识别的 AR/AI 眼镜商品清单

  •  3. 收集产品规格

    •  显示技术(分辨率、视野等)

    •  处理能力(CPU、GPU、NPU)

    •  电池寿命和充电规格

    •  重量和外形尺寸

    •  连接选项

    •  作系统和软件功能

    •  相机和传感器规格

  •  4. 研究定价信息

    •  公布零售价

    •  未发布产品的预计价格

    •  不同的定价层/型号(如果适用)

  •  5. 调查组件配置和供应商

    •  显示面板制造商

    •  处理器供应商

    •  电池供应商

    •  相机和传感器供应商

    •  其他关键零部件供应商

  •  6. 收集预计的销售量

    •  查找分析师对商品销量的预测

    •  研究公司预测(如有)

    •  市场份额估计

  •  7. 将数据编译成明细表

    •  创建包含所有收集数据的综合表

    •  确保所有商品的格式一致

    •  包括所有必需的数据类别

  •  8. 审阅并完成报告

    •  检查数据的准确性和完整性

    •  确保格式一致

    •  添加任何其他相关信息

  •  9. 向用户发送报告

    •  准备带有表格的最终文件

    •  将完成的研究发送给用户

Step-2:看看其他文件的细节

其实基本上从流程中我们可以判断出剩余的过程文件中包含哪些内容。看图!

比如这个apple_vision_pro公布了苹果产品的参数、定价等参数信息。

Image

        比如这个pricing_information包含了所有市面上眼镜的价格信息,包括一份即将发布的产品价格信息!

Image

        比如这个component_suppliers文件提供了AR/AI眼睛相关供应商信息

Image

        其他几份文件就不贴图了,其他文件大部分是已有产品类似apple_vision_pro中的产品参数信息,还有一份产品预计销售估计报告以及最终产生的表格。不过这个表格确实挺庞大。图片在下一节全部展示一下。宝子们也可以去官网看一下这个案例。

Step-3:看最终报告

Image

Image

Image

Image

内容部分,分为一张数据大表,一份供应商信息一个市场预期销售额!基本就是一个小的报告,作文论文的数据支撑可能还需要很多工作。

接下来那我们来看看

Deep reaserch完成AR/AI眼镜研究报告

2、Deep reaserch

        OpenAI Deep Research 是一款强大的 AI 研究工具,能够显著提升研究效率。它基于 OpenAI 的 o3 模型,专为复杂研究任务设计,能够自动搜索、解读和整合海量在线信息,生成专业级研究报告。

核心能力

  • 多步骤研究任务:Deep Research 能够规划并执行多步骤研究任务,实时搜索、解读和分析互联网上的文本、图像和 PDF 文件。它能够根据遇到的信息自主调整研究方向;

  • 专业级报告生成:该工具能够生成相当于研究分析师水平的综合报告,包含清晰的引用和数据可视化内容,确保信息的准确性和可验证性;

  • 强化学习训练:Deep Research 通过端到端强化学习进行训练,具备多步骤推理和回溯调整能力,使其在处理复杂任务时表现出色。

应用场景

  • 专业人士:适用于金融、科学、政策和工程等领域的专业人士,提供精准、可靠的研究支持;

  • 消费者:对于需要进行深度调研的消费者,如购买汽车、家电等,Deep Research 能够提供个性化的购买决策支持;

  • 小众信息搜索:能够自动化获取通常需要手动查找的小众、非直观信息。

使用方式

  • ChatGPT 集成:用户可以在 ChatGPT 中选择 “Deep Research” 模式,输入研究问题,并可上传文件或表格以提供更多上下文;

  • 任务时间:研究任务通常需要 5-30 分钟完成,用户可以在任务完成后收到通知。

技术表现

  • 人类终极考试:在 “人类终极考试” 中,Deep Research 的准确率达到 26.6%,远超其他模型,如 GPT-4o;

  • GAIA 评估:在 GAIA 评估中,Deep Research 达到了新的行业最佳水平,展示了其在处理现实问题上的强大能力。

未来展望

  • 移动与桌面支持:未来 1 个月内,Deep Research 将支持移动和桌面端;

  • 资源连接:计划连接订阅数据库和企业内部资源,进一步提升研究能力。

Deep Research 作为 OpenAI 的第二个 Agent,不仅展示了 AI 在复杂任务处理上的潜力,还为未来更广泛的 Agent 发展奠定了基础。

3、Deep reaserch进行行业分析

提示词部分直接使用manus结果开头的提示词。

提示词:

研究文章和行业报告,编制一份将于 2024 年至 2025 年推出的 AR/AI 眼镜综合清单。将数据组织成一个详细的表格,包括品牌、产品规格、定价、核心组件配置及其供应商和预计的销量。

ChatGPT-Deep Reaserch

Image

交互提示词:常规操作,需要将上述内容明确。

1.关注消费级产品即可 

2.需要包括尚未发布但是已有消息的产品 

3.不需要包含预估价格,这一块可以更开放一些 

4.全球范围 

5.先整理一份Markdown格式,但是最终能整理成一份excel更好。

ChatGPT-Deep Reaserch

Image

Image

Image

Image

        从最终结果来看,Deep reaserch相对简单,直接给出了一个表格。但是仔细以看,manus最终的内容有用的也就是那个表格。

总结一下:

1.从过程数据来看,manus将过程中需要的内容总结成了文档形式。这个作为论文研究数据来说可用性更高,但是缺乏了可操作性。而Deep reaserch在资源蓝将所有检索资源全部展现出来,数据形式更原始,但是可操作性更强。

2.从操作过程来看,manus更炫酷,昨天的分享中图表功能也很炫酷。

所以,两款能力极强的产品个人感觉在学术论文数据分析方面能有很强的助力能力。如果有账号,我可能更倾向manus,毕竟产出的内容优化更好,可以直接使用。动手能力强的宝子们可能Deep reaserch更加合适!

相关文章:

manus对比ChatGPT-Deep reaserch进行研究类论文数据分析!谁更胜一筹?

目录 没有账号,只能挑选一个案例 1、manus的效果 Step-1:直接看结果 Step-2:看看其他文件的细节 Step-3:看最终报告 2、Deep reaserch 3、Deep reaserch进行行业分析 总结一下: 大家好这里是学术Anan&#xff…...

【 HarmonyOS 5 入门系列 】鸿蒙HarmonyOS示例项目讲解

【 HarmonyOS 5 入门系列 】鸿蒙HarmonyOS示例项目讲解 一、前言:移动开发声明式 UI 框架的技术变革 在移动操作系统的发展历程中,UI 开发模式经历了从命令式到声明式的重大变革。 根据华为开发者联盟 2024 年数据报告显示,HarmonyOS 设备…...

AWS Transit Gateway实战:构建DMZ隔离架构,实现可控的网络互通

在企业云网络架构中,如何实现不同VPC之间的安全互通是一个常见挑战。本文将通过AWS Transit Gateway实战,展示如何构建一个DMZ隔离架构,使DMZ可以与Test和Production环境互通,而Test和Production环境之间相互隔离。 1. Transit Gateway架构设计概述 在开始实践前,让我们先…...

用提示词写程序(3),VSCODE+Claude3.5+deepseek开发edge扩展插件V2

edge扩展插件;筛选书签,跳转搜索,设置背景 链接: https://pan.baidu.com/s/1nfnwQXCkePRnRh5ltFyfag?pwd86se 提取码: 86se 导入解压的扩展文件夹: 导入扩展成功: edge扩展插件;筛选书签,跳转搜索,设置背景...

栈与队列:数据结构的有序律动

在数据结构的舞台上,栈与队列宛如两位优雅的舞者,以独特的节奏演绎着数据的进出规则。它们虽不像顺序表与链表那般复杂多变,却有着令人着迷的简洁与实用,在众多程序场景中发挥着不可或缺的作用。今天,就让我们一同去探…...

初识PS(Photoshop)

初识PS(Photoshop) 1、Photoshop界面 2、常用快捷键...

go语言的GMP(基础)

1.概念梳理 1.1线程 通常语义中的线程,指的是内核级线程,核心点如下: (1)是操作系统最小调度单元; (2)创建、销毁、调度交由内核完成,cpu 需完成用户态与内核态间的切…...

电路图识图基础知识-高、低压供配电系统电气系统的继电自动装置(十三)

电气系统的继电自动装置 在供电系统中为保证系统的可靠性,保证重要负荷的不间断供电,常采用自动重合闸装置和备用电源自动投入装置。 1 自动重合闸装置 供配电系统多年运行实践表明,架空线路发生的故障多属于暂时性故障,如雷击…...

JDK21深度解密 Day 9:响应式编程模型重构

【JDK21深度解密 Day 9】响应式编程模型重构 引言:从Reactor到虚拟线程的范式转变 在JDK21中,虚拟线程的引入彻底改变了传统的异步编程模型。作为"JDK21深度解密"系列的第91天,我们将聚焦于响应式编程模型重构这一关键主题。通过…...

在 Linux 服务器上无需 sudo 权限解压/打包 .7z 的方法(实用命令)

7z的压缩比很高,可以把100G的文件压到3-5G,在大文件传输上很有优势但是一般服务器上是只有tar解压,用户没法(没有权限)直接安装7z工具来解压因此使用conda安装p7zip库可以很好地解决这个问题~ 关于7z的相关背景知识&am…...

微信小程序(uniapp)实现腾讯云 IM 消息撤回

uniapp 实现腾讯云 IM 消息撤回功能实战指南 一、功能实现原理 腾讯云 IM 的消息撤回功能通过 消息修订(Message Revision) 机制实现,核心流程如下: 发送方调用撤回 API 删除指定消息云端生成撤回通知消息(类型为 T…...

设计学生管理系统的数据库

在设计学生管理系统的数据库时,需要考虑多个实体及其关系。以下是一个基本的学生管理系统表结构设计,涵盖了核心实体和关系: 1. 用户表 (user) 存储所有系统用户的基本信息,包括学生、教师和管理员。 sql CREATE TABLE user (u…...

ArcGIS Pro 3.4 二次开发 - 图形图层

环境:ArcGIS Pro SDK 3.4 + .NET 8 文章目录 图形图层1.1 创建图形图层1.2 访问GraphicsLayer1.3 复制图形元素1.4 移除图形元素2 创建图形元素2.1 使用CIMGraphic创建点图形元素2.2 使用CIMGraphic创建线图元素2.3 使用 CIMGraphic 的多边形图形元素2.4 使用CIMGraphic创建多…...

Linux配置DockerHub镜像源配置

个人博客地址:Linux配置DockerHub镜像源配置 | 一张假钞的真实世界 因为某些原因,DockerHub官方镜像源已不可用,国内一些镜像源也已不可用,大家可以搜索可用的镜像源并修改配置。推荐一篇良心博文:https://zhuanlan.z…...

JDK21深度解密 Day 11:云原生环境中的JDK21应用

【JDK21深度解密 Day 111】云原生环境中的JDK21应用 本文是《JDK21深度解密:从新特性到生产实践的全栈指南》专栏的第11天内容,聚焦云原生环境中的JDK21应用。我们将深入探讨如何在容器化、微服务、Serverless等云原生架构中充分发挥JDK21的技术优势,提升Java应用的性能、稳…...

如何学习才能更好地理解人工智能工程技术专业和其他信息技术专业的关联性?

要深入理解人工智能工程技术专业与其他信息技术专业的关联性,需要跳出单一专业的学习框架,通过 “理论筑基 - 实践串联 - 跨学科整合” 的路径构建系统性认知。以下是分阶段、可落地的学习方法: 一、建立 “专业关联” 的理论认知框架 绘制知…...

Qt实现的水波进度条和温度进度条

一.效果 二.原理 1.水波 要模拟波浪,就要首先画出一条波浪线,正弦余弦曲线就很适合。 y=A*sin(ω*x+φ)+k y=A*cos(ω*x+φ)+k 这是正弦余弦曲线的公式,要想实现水波效果,那需要两条曲线,一条曲线的波峰对着另外一条曲线的波谷,要实现这样的曲线效果,只有让正弦曲线前移…...

3516cv610在sample_aiisp上多创一路编码流,方法

3516cv610在sample_aiisp上多创一路编码流,方法 首先确保 vpss grp0有视频流 最好保证 已经有一路视频流能推出来 多创一路编码流思路为 将 vpss grp0又绑定给 vpss_chn1 vpss_chn1有绑定给 venc_chn1 这样我们就多创了一路视频流。 这里思路完全正确 可以实现…...

WEBSTORM前端 —— 第3章:移动 Web —— 第4节:移动适配-VM

目录 一、适配方案 二、VM布局 ​编辑 三、vh布局 四、案例—酷我音乐 一、适配方案 二、VM布局 三、vh布局 四、案例—酷我音乐...

Android第十一次面试补充篇

Livedata内存泄漏解决​ 1. 未正确绑定 LifecycleOwner​ ​原因​: 使用 observe() 时未传入正确的 LifecycleOwner(如 Activity/Fragment),或误用 Application 等长生命周期对象,导致观察者无法自动解除绑定。 ​…...

【Zephyr 系列 3】多线程与调度机制:让你的 MCU 同时干多件事

好的,下面是Zephyr 系列第 3 篇:聚焦 多线程与调度机制的实践应用,继续面向你这样的 Ubuntu + 真板实战开发者,代码清晰、讲解通俗、结构规范,符合 CSDN 高质量博客标准。 🧠关键词:Zephyr、线程调度、k_thread、k_sleep、RTOS、BluePill 📌适合人群:想从裸机开发进…...

Kotlin-特殊类型

文章目录 数据类型枚举类型匿名类和伴生对象单例类伴生对象 数据类型 声明一个数据类非常简单: //在class前面添加data关键字表示为一个数据类 data class Student(var name: String, var age: Int)数据类声明后,编译器会根据主构造函数中声明的所有属性自动为其生成以下函数…...

nssctf第二题[SWPUCTF 2021 新生赛]简简单单的逻辑

这是题目&#xff0c;下载后得到一个python文件,打开 解读代码&#xff1a; for i in range(len(list)):key (list[i]>>4)((list[i] & 0xf)<<4)result str(hex(ord(flag[i])^key))[2:].zfill(2)list[i]>>4&#xff1a;从列表中取数字同时高4位向右位…...

《Discuz! X3.5开发从入门到生态共建》第3章 Discuz! X3.5 核心目录结构解析-优雅草卓伊凡

《Discuz! X3.5开发从入门到生态共建》第3章 Discuz! X3.5 核心目录结构解析-优雅草卓伊凡 3.1 系统核心目录结构 Discuz! X3.5采用模块化设计&#xff0c;主要目录结构如下&#xff1a; discuz_root/ ├─ api/ // API接口目录 ├─ config/ …...

【HarmonyOS 5】鸿蒙应用实现发票扫描、文档扫描输出PDF图片或者表格的功能

【HarmonyOS 5】鸿蒙应用实现发票扫描、文档扫描输出PDF图片或者表格的功能 一、前言 图(1-1) HarmonyOS 系统提供的核心场景化视觉服务,旨在帮助开发者快速实现移动端文档数字化功能。 其核心能力包括:扫描合同、票据、会议记录并保存为 PDF 分享。拍摄课堂 PPT、书籍章…...

Python_day43

DAY 43 复习日 作业&#xff1a; kaggle找到一个图像数据集&#xff0c;用cnn网络进行训练并且用grad-cam做可视化 进阶&#xff1a;并拆分成多个文件 关于 Dataset 从谷歌图片中抓取了 1000 多张猫和狗的图片。问题陈述是构建一个模型&#xff0c;该模型可以尽可能准确地在图像…...

STM32CubeDAC及DMA配置

STM32CubeDAC及DMA配置 一&#xff0c;问题1二&#xff0c;解决11&#xff0c;宏观思路CubeMX配置2&#xff0c;HAL_TIM_Base_Start(&htim6) 的作用1&#xff0c;作用1&#xff1a;使能TIM6的时钟并让它开始计数2&#xff0c;作用2&#xff1a;当 TIM6 溢出时&#xff0c;会…...

SQL快速入门【转自牛客网】

来源:牛客网 1、SQL 基础查询 在 SQL 中,SELECT 语句是最基本的查询语句,用于从数据库表中检索数据。通过 SELECT 语句,可以选择表中的所有列或特定列,并根据需要进行过滤和排序。 基本语法 SELECT 语句的基本语法如下: SELECT column1, column2, ... FROM table_na…...

行业案例 | OPPO借助Azure AI Speech国际服务实现音频文件智能转录

OPPO是全球领先的智能终端与移动互联网服务提供商&#xff0c;业务覆盖50余国&#xff0c;通过超40万销售网点和2500个服务中心与全球用户共享科技。作为软硬服一体化科技公司&#xff0c;OPPO以ColorOS为核心优化软件平台&#xff0c;为4.4亿月活用户打造智能操作系统&#xf…...

基于 OpenCV 和 DLib 实现面部特征调整(眼间距、鼻子、嘴巴)

摘 要 本文介绍如何利用Dlib面部特征点检测和OpenCV图像处理技术&#xff0c;通过Python实现面部特征的精准调整。我们将以改变眼间距为例&#xff0c;演示包括地标检测、三角剖分变形等关键技术&#xff0c;该方法可扩展至嘴唇、眉毛等面部特征的调整。 技术栈 Python 3.8 …...