机器学习——什么时候使用决策树
无论是决策树,包括集成树还是神经网络都是非常强大、有效的学习方法。
下面是各自的优缺点:
决策树和集成树通常在表格数据上表现良好,也称为结构化数据,这意味着如果你的数据集看起来像一个巨大的电子表格,那么决策树是值得考虑的。例如,在房价预测应用中,我们有一个数据集,其包含于房屋大小、卧室数量、楼层数量和房龄相关特征,这种类型的数据存储在电子表格中,带有分类或连续值特征,无论是用于分类任务还是回归任务,当你试图预测一个离散类别或预测一个数值时,所有这些问题都是决策树可以做得很好的。相比之下,不推荐在非结构化数据上使用决策树和集成树,例如:图像、视频、音频和文本,这些数据不太可能以电子表格格式存储。
决策树和集成树的一个巨大优势是它们训练速度非常快,小型决策树可能更容易被人类理解,如果你只训练一个决策树,而且这个决策树只有几十个节点,那么可以打印出决策树,以确切了解它是如何做出决策的。当你构建包含100棵树的集成模型,而每棵树都有数百个节点时,要弄清楚集成模型在做什么变得困难,可能需要某些单独的可视化技术。但如果你有一个小型决策树,实际上可以查看它并通过观察某些特征,以某种方式来分类某物是不是一只猫。如果你决定使用决策树或集成树,在大多数情况下会使用XGBoost。集成树的一个小缺点是:它比单个决策树稍微昂贵一些,所以如果你的预算非常有限,你也许会使用单个决策树,但除此之外,几乎总是使用集成树,特别是使用XGBoost.
神经网络更适合处理非结构化数据任务。与决策树和集成树不同,神经网络在所有类型的数据上都表现良好,包括表格或结构化数据,也包括非结构化数据,以及包含结构化和非结构化组建的混合数据。在表格结构化数据上,神经网络和决策树都具有竞争力,而在非结构化数据上,神经网络是首选,而不是决策树或集成树,神经网络的一个缺点是:神经网络可能比决策树更慢,一个大型的神经网络可能需要很长时间来训练,神经网络的其他优势包括:它可以与迁移学习结合,因为在许多应用中,如果你的数据集很小,能够适应迁移学习并在一个更大的数据集上进行预训练,这是获得竞争性表现的关键。
最后,有一些技术上的原因,可能更容易使得将多个神经网络串联使用,构建一个更大的机器学习系统,基本原因是:神经网络将输出y计算为输入x的平滑或连续函数,因此即使串联了很多不同的模型,这些不同模型的输出本身也是微小的,所以可以同时使用梯度下降法训练它们。而对于决策树,只能一次训练一棵树。如果要构建一个由多个机器学习模型协同工作的系统,串联和训练多个神经网络可能比多个决策树更容易。
相关文章:
机器学习——什么时候使用决策树
无论是决策树,包括集成树还是神经网络都是非常强大、有效的学习方法。 下面是各自的优缺点: 决策树和集成树通常在表格数据上表现良好,也称为结构化数据,这意味着如果你的数据集看起来像一个巨大的电子表格,那么决策…...
llm-d:面向Kubernetes的高性能分布式LLM推理框架
在生成式AI(GenAI)浪潮中,高效、经济地部署和扩展大型语言模型(LLM)推理服务是企业面临的核心挑战。传统基于Kubernetes的横向扩展(Scale-out)和负载均衡策略在处理独特的LLM推理工作负载时往往…...

前端没有“秦始皇“,但可以做跨端的王[特殊字符]
前端各领域的 “百家争鸣” 框架之争:有 React、Vue、Angular 等多种框架。它们各有优缺点,开发者之间还存在鄙视链,比如 Vue 嫌 React 难用,React 嫌 Vue 不够灵活。样式处理: CSS 预处理器:像 Sass、Les…...
Flutter如何支持原生View
在 Flutter 中集成原生 View(如 Android 的 SurfaceView、iOS 的 WKWebView)是通过 平台视图(Platform View) 实现的。这一机制允许在 Flutter UI 中嵌入原生组件,解决了某些场景下 Flutter 自身渲染能力的不足&#x…...

mongodb源码分析session异步接受asyncSourceMessage()客户端流变Message对象
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制,ASIOSession和connection是循环接受客户端命令,状态转变流程是:State::Created 》 State::Source 》State::…...

【数据分析】什么是鲁棒性?
引言 —— 为什么我们需要“抗折腾”的系统? 当你乘坐的飞机穿越雷暴区时机体剧烈颠簸,自动驾驶汽车在暴雨中稳稳避开障碍物,或是手机从口袋摔落后依然流畅运行——这些场景背后,都藏着一个工程领域的“隐形守护者”:…...
适老化场景重构:现代家政老年照护虚拟仿真实训室建设方案
随着老龄化社会的深度发展,老年照护服务的专业化需求对人才培养提出了更高要求。 凯禾瑞华以现代家政管理理念为核心,推出老年照护虚拟仿真实训室建设方案,通过虚拟仿真技术重构适老化生活场景,融合数字课程、产教融合及搭载智能…...

Qt/C++学习系列之QGroupBox控件的简单使用
Qt/C学习系列之QGroupBox控件的简单使用 前言样式使用代码层面初始化控件事件过滤器点击事件处理 总结 前言 最近在练手一个项目,项目中有不同功能的划分,为了功能分区一目了然,我使用到QGroupBox控件,也是在界面排版布局中最常用…...
Ubuntu设置之初始化
安装SSH服务 # 安装 OpenSSH Server sudo apt update sudo apt install -y openssh-server# 检查 SSH 服务状态 sudo systemctl status ssh # Active: active (running) since Sat 2025-05-31 17:13:07 CST; 6s ago# 重启服务 sudo systemctl restart ssh自定义分辨率 新…...

如何轻松地将数据从 iPhone传输到iPhone 16
对升级到 iPhone 16 感到兴奋吗?恭喜!然而,除了兴奋之外,学习如何将数据从 iPhone 传输到 iPhone 16 也很重要。毕竟,那些重要的联系人、笔记等都是不可或缺的。为了实现轻松的iPhone 到 iPhone 传输,我们总…...

开源供应链攻击持续发酵,多个软件包仓库惊现恶意组件
近期在npm、Python和Ruby软件包仓库中相继发现多组恶意组件,这些组件能够清空加密货币钱包资金、安装后删除整个代码库并窃取Telegram API令牌,再次印证了开源生态系统中潜伏的多样化供应链威胁。 多平台恶意组件集中曝光 Checkmarx、ReversingLabs、S…...
Docker Compose 备忘
1。docker-compose.yml services:air-web:build: .ports:- "1027:1027"volumes:- .:/codedepends_on:- air-redisair-redis:image: "redis:alpine" 2. DockerfileFROM python:3.12-slim-bookworm #设置工作目录 WORKDIR /code #将当前目录内容拷贝到容器…...

量子计算+AI:特征选择与神经网络优化创新应用
在由玻色量子协办的第二届APMCM“五岳杯”量子计算挑战赛中,来自北京理工大学的Q-Masterminds团队摘取了银奖。该团队由北京理工大学张玉利教授指导,依托玻色量子550计算量子比特的相干光量子计算机,将量子计算技术集成到特征选择和神经网络剪…...
算法分析与设计-动态规划、贪心算法
目录 第三章——动态规划 第四章——贪心算法 第三章——动态规划 /*【问题描述】 使用动态规划算法解矩阵连乘问题,具体来说就是,依据其递归式自底向上的方式进行计算,在计算过程中,保存子问题答案,每个子问题只解…...

光伏功率预测新突破:TCN-ECANet-GRU混合模型详解与复现
研究背景 背景与挑战 光伏发电受天气非线性影响,传统方法(统计模型、机器学习)难以处理高维时序数据,预测误差大。创新模型提出 融合时序卷积网络(TCN)、高效通道注意力(ECANet)和门控循环单元(GRU)的混合架构。方法论细节 TCN:膨胀因果卷积提取长时序特…...
React组件基础
组件是什么? 概念:一个组件就是用户界面的一部分,它可以有自己的逻辑和外观,组件之间可以相互嵌套,也可以多次复用 组件化开发,可以让开发者像搭积木一样构建一个完整庞大的应用 react组件 在react中&a…...
2025年5月24日系统架构设计师考试题目回顾
当前仅仅是个人用于记录,还未做详细分析,待更新… 综合知识 设 x,y 满足约束条件:x-1>0, x-y<0, x-y-x<0, 则 y/x 的最大值是()。 A. 3 B. 2 C. 4 D. 1 申请软件著作权登记时应当向中国版本保护中心提交软件的鉴别材料ÿ…...
ABP 框架集成 EasyAbp.Abp.GraphQL 构建高性能 GraphQL API
🚀 ABP 框架集成 EasyAbp.Abp.GraphQL 构建高性能 GraphQL API 📚 目录 🚀 ABP 框架集成 EasyAbp.Abp.GraphQL 构建高性能 GraphQL API🧭 背景与目标🛠 安装与依赖📦 模块注册与启动MyProjectHttpApiHostMo…...

C# 用户控件(User Control)详解:创建、使用与最佳实践
在C#应用程序开发中,用户控件(User Control)是一种强大的工具,它允许开发者将多个标准控件组合成一个可复用的自定义组件。无论是Windows Forms还是WPF,用户控件都能显著提高UI开发的效率,减少重复代码&…...

OpenWrt 搭建 samba 服务器的方法并解决 Windows 不允许访问匿名服务器(0x80004005的错误)的方法
文章目录 一、安装所需要的软件二、配置自动挂载三、配置 Samba 服务器四、配置 Samba 访问用户和密码(可选)新建 Samba 专门的用户添加无密码的 Samba 账户使用root账户 五、解决 Windows 无法匿名访问Samba方案一 配置无密码的Samba账户并启用匿名访问…...

【 Redis | 完结篇 缓存优化 】
前言:本节包含常见redis缓存问题,包含缓存一致性问题,缓存雪崩,缓存穿透,缓存击穿问题及其解决方案 1. 缓存一致性 我们先看下目前企业用的最多的缓存模型。缓存的通用模型有三种: 缓存模型解释Cache Asi…...

AI数据集构建:从爬虫到标注的全流程指南
AI数据集构建:从爬虫到标注的全流程指南 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 AI数据集构建:从爬虫到标注的全流程指南摘要引言流程图:数据集构建全生命周期一、数据采…...
Android 颜色百分比对照
本文就是简单写个demo,打印下颜色百分比的数值.方便以后使用. 1: 获取透明色 具体的代码如下: /*** 获取透明色* param percent* param red* param green* param blue* return*/public static int getTransparentColor(int percent, int red, int green, int blue) {int alp…...

AI破局:饿了么如何搅动即时零售江湖
最近,即时零售赛道打的火热,对我们的生活也产生了不少的影响。 美女同事小张就没少吐槽“他们咋样了我不知道,奶茶那么便宜,胖了五六斤不说,钱包也空了,在淘宝买奶茶的时候,换了个手机还买了不少…...

04 APP 自动化- Appium toast 元素定位列表滑动
文章目录 一、toast 元素的定位二、滑屏操作 一、toast 元素的定位 toast 元素就是简易的消息提示框,toast 显示窗口显示的时间有限,一般3秒左右 # -*- codingutf-8 -*- from time import sleep from appium import webdriver from appium.options.an…...
判断它是否引用了外部库
在一个 C# 项目中,要系统性地判断它是否引用了外部库(包括 NuGet 包、引用的 DLL、项目间依赖等),你应从以下几个关键维度入手进行检查和分析: 1. 检查 .csproj 项目文件 C# 项目使用 .csproj 文件(MSBuil…...

物流项目第十期(轨迹微服务)
本项目专栏: 物流项目_Auc23的博客-CSDN博客 建议先看这期: MongoDB入门之Java的使用-CSDN博客 物流项目第九期(MongoDB的应用之作业范围)-CSDN博客 业务需求 快递员取件成功后,需要将订单转成运单,用…...
Python 入门到进阶全指南:从语言特性到实战项目
一、Python 简介 Python 是一种高级、跨平台、解释型编程语言,以简洁语法和高可读性著称,既适合编程初学者快速入门,也能满足资深开发者的复杂需求。其核心特性与应用场景如下: 核心特性解析 解释型语言:无需编译即可…...

【数据库】关系数据理论--规范化
1.问题的提出 关系模式由五部分组成,是一个五元组: R(U, D, DOM, F) (1)关系名R是符号化的元组语义 (2)U为一组属性 (3)D为属性组U中的属性所来自的域 (4)DOM…...
SQL 中 JOIN 的执行顺序优化指南
SQL 中 JOIN 的执行顺序优化指南 一、JOIN 执行顺序基础原理 在 SQL 查询中,JOIN的执行顺序是查询优化的重要环节。数据库引擎会根据多种因素决定最优的 JOIN 顺序: 逻辑执行顺序:SQL 语句的书写顺序(如 FROM → WHERE → GROUP BY)并不代表实际执行顺序物理执行顺序:由查…...