当前位置: 首页 > article >正文

【DAY40】训练和测试的规范写法

内容来自@浙大疏锦行python打卡训练营

@浙大疏锦行


知识点:
  1. 彩色和灰度图片测试和训练的规范写法:封装在函数中
  2. 展平操作:除第一个维度batchsize外全部展平
  3. dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout

作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。


昨天我们介绍了图像数据的格式以及模型定义的过程,发现和之前结构化数据的略有不同,主要差异体现在2处

1. 模型定义的时候需要展平图像

2. 由于数据过大,需要将数据集进行分批次处理,这往往涉及到了dataset和dataloader来规范代码的组织

现在我们把注意力放在训练和测试代码的规范写法上

单通道图片的规范写法

# 先继续之前的代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具
from torchvision import datasets, transforms # torchvision 是一个用于计算机视觉的库,datasets 和 transforms 是其中的模块
import matplotlib.pyplot as plt
import warnings
# 忽略警告信息
warnings.filterwarnings("ignore")
# 设置随机种子,确保结果可复现
torch.manual_seed(42)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x)  # 展平图像x = self.layer1(x)   # 第一层线性变换x = self.relu(x)     # 应用ReLU激活函数x = self.layer2(x)   # 第二层线性变换,输出logitsreturn x# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)# from torchsummary import summary  # 导入torchsummary库
# print("\n模型结构信息:")
# summary(model, input_size=(1, 28, 28))  # 输入尺寸为MNIST图像尺寸criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 新增:记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号(从1开始)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):# enumerate() 是 Python 内置函数,用于遍历可迭代对象(如列表、元组)并同时获取索引和值。# batch_idx:当前批次的索引(从 0 开始)# (data, target):当前批次的样本数据和对应的标签,是一个元组,这是因为dataloader内置的getitem方法返回的是一个元组,包含数据和标签。# 只需要记住这种固定写法即可data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)optimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始# 统计准确率和损失running_loss += loss.item() #将loss转化为标量值并且累加到running_loss中,计算总损失_, predicted = output.max(1) # output:是模型的输出(logits),形状为 [batch_size, 10](MNIST 有 10 个类别)# 获取预测结果,max(1) 返回每行(即每个样本)的最大值和对应的索引,这里我们只需要索引total += target.size(0) # target.size(0) 返回当前批次的样本数量,即 batch_size,累加所有批次的样本数,最终等于训练集的总样本数correct += predicted.eq(target).sum().item() # 返回一个布尔张量,表示预测是否正确,sum() 计算正确预测的数量,item() 将结果转换为 Python 数字# 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 测试、打印 epoch 结果epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 保留原 epoch 级曲线(可选)# plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)return epoch_test_acc  # 返回最终测试准确率

之前我们用mlp训练鸢尾花数据集的时候并没有用函数的形式来封装训练和测试过程,这样写会让代码更加具有逻辑-----隔离参数和内容。

1. 后续直接修改参数就行,不需要去找到对应操作的代码

2. 方便复用,未来有多模型对比时,就可以复用这个函数

这里我们先不写早停策略,因为规范的早停策略需要用到验证集,一般还需要划分测试集

1. 划分数据集:训练集(用于训练)、验证集(用于早停和调参)、测试集(用于最终报告性能)

2. 在训练过程中,使用验证集触发早停

3. 训练结束后,仅用测试集运行一次测试函数,得到最终准确率

测试函数和绘图函数均被封装在了train函数中,但是test和绘图函数在定义train函数之后,这是因为在 Python 中,函数定义的顺序不影响调用,只要在调用前已经完成定义即可。

# 6. 测试模型(不变)
def test(model, test_loader, criterion, device):model.eval()  # 设置为评估模式test_loss = 0correct = 0total = 0with torch.no_grad():  # 不计算梯度,节省内存和计算资源for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy  # 返回损失和准确率

如果打印每一个bitchsize的损失和准确率,会看的更加清晰,更加直观

# 7. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()
# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

在PyTorch中处理张量(Tensor)时,以下是关于展平(Flatten)、维度调整(如view/reshape)等操作的关键点,这些操作通常不会影响第一个维度(即批量维度`batch_size`):

图像任务中的张量形状

输入张量的形状通常为:  

`(batch_size, channels, height, width)`  

例如:`(batch_size, 3, 28, 28)`  

其中,`batch_size` 代表一次输入的样本数量。

NLP任务中的张量形状

输入张量的形状可能为:  

`(batch_size, sequence_length)`  

此时,`batch_size` 同样是第一个维度。

1. Flatten操作

- 功能:将张量展平为一维数组,但保留批量维度。

- 示例:  

  - 输入形状:`(batch_size, 3, 28, 28)`(图像数据)  

  - Flatten后形状:`(batch_size, 3×28×28)` = `(batch_size, 2352)`  

  - 说明:第一个维度`batch_size`不变,后面的所有维度被展平为一个维度。

2. view/reshape操作

- 功能:调整张量维度,但必须显式保留或指定批量维度。

- 示例:  

  - 输入形状:`(batch_size, 3, 28, 28)`  

  - 调整为:`(batch_size, -1)`  

  - 结果:展平为两个维度,保留`batch_size`,第二个维度自动计算为`3×28×28=2352`

总结

- 批量维度不变性:无论进行flatten还是view、reshape操作,第一个维度`batch_size`通常保持不变。

- 动态维度指定:使用`-1`让PyTorch自动计算该维度的大小,但需确保其他维度的指定合理,避免形状不匹配错误。

下面是所有代码的整合版本

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转换为张量并归一化到[0,1]transforms.Normalize((0.1307,), (0.3081,))  # MNIST数据集的均值和标准差
])# 2. 加载MNIST数据集
train_dataset = datasets.MNIST(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.MNIST(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64  # 每批处理64个样本
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义模型、损失函数和优化器
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将28x28的图像展平为784维向量self.layer1 = nn.Linear(784, 128)  # 第一层:784个输入,128个神经元self.relu = nn.ReLU()  # 激活函数self.layer2 = nn.Linear(128, 10)  # 第二层:128个输入,10个输出(对应10个数字类别)def forward(self, x):x = self.flatten(x)  # 展平图像x = self.layer1(x)   # 第一层线性变换x = self.relu(x)     # 应用ReLU激活函数x = self.layer2(x)   # 第二层线性变换,输出logitsreturn x# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数,适用于多分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 新增:记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号(从1开始)for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPU(如果可用)optimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失(注意:这里直接使用单 batch 损失,而非累加平均)iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)  # iteration 序号从1开始# 统计准确率和损失(原逻辑保留,用于 epoch 级统计)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息(可选:同时打印单 batch 损失)if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 原 epoch 级逻辑(测试、打印 epoch 结果)不变epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totalepoch_test_loss, epoch_test_acc = test(model, test_loader, criterion, device)print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)# 保留原 epoch 级曲线(可选)# plot_metrics(train_losses, test_losses, train_accuracies, test_accuracies, epochs)return epoch_test_acc  # 返回最终测试准确率# 6. 测试模型
def test(model, test_loader, criterion, device):model.eval()  # 设置为评估模式test_loss = 0correct = 0total = 0with torch.no_grad():  # 不计算梯度,节省内存和计算资源for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()avg_loss = test_loss / len(test_loader)accuracy = 100. * correct / totalreturn avg_loss, accuracy  # 返回损失和准确率# 7.绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 8. 执行训练和测试(设置 epochs=2 验证效果)
epochs = 2  
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

彩色图片的规范写法

彩色的通道也是在第一步被直接展平,其他代码一致

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),                # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(0.2)self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别def forward(self, x):# 第一步:将输入图像展平为一维向量x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]# 第一层全连接 + 激活 + Dropoutx = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]x = self.relu1(x)    # 应用ReLU激活函数x = self.dropout1(x) # 训练时随机丢弃部分神经元输出# 第二层全连接 + 激活 + Dropoutx = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]x = self.relu2(x)    # 应用ReLU激活函数x = self.dropout2(x) # 训练时随机丢弃部分神经元输出# 第三层(输出层)全连接x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]return x  # 返回未经过Softmax的logits# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs):model.train()  # 设置为训练模式# 记录每个 iteration 的损失all_iter_losses = []  # 存储所有 batch 的损失iter_indices = []     # 存储 iteration 序号for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)  # 移至GPUoptimizer.zero_grad()  # 梯度清零output = model(data)  # 前向传播loss = criterion(output, target)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新参数# 记录当前 iteration 的损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计准确率和损失running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()# 每100个批次打印一次训练信息if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')# 计算当前epoch的平均训练损失和准确率epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / total# 测试阶段model.eval()  # 设置为评估模式test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testprint(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制所有 iteration 的损失曲线plot_iter_losses(all_iter_losses, iter_indices)return epoch_test_acc  # 返回最终测试准确率# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型
# torch.save(model.state_dict(), 'cifar10_mlp_model.pth')
# # print("模型已保存为: cifar10_mlp_model.pth")

由于深度mlp的参数过多,为了避免过拟合在这里引入了dropout这个操作,他可以在训练阶段随机丢弃一些神经元,避免过拟合情况。dropout的取值也是超参数。

在测试阶段,由于开启了eval模式,会自动关闭dropout。

可以继续调用这个函数来复用

# 7. 执行训练和测试
epochs = 20  # 增加训练轮次以获得更好效果
print("开始训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

此时你会发现MLP(多层感知机)在图像任务上表现较差(即使增加深度和轮次也只能达到 50-55% 准确率),主要原因与图像数据的空间特性和MLP 的结构缺陷密切相关。

1. MLP 的每一层都是全连接层,输入图像会被展平为一维向量(如 CIFAR-10 的 32x32x3 图像展平为 3072 维向量)。图像中相邻像素通常具有强相关性(如边缘、纹理),但 MLP 将所有像素视为独立特征,无法利用局部空间结构。例如,识别 “汽车轮胎” 需要邻近像素的组合信息,而 MLP 需通过大量参数单独学习每个像素的关联,效率极低。

2. 深层 MLP 的参数规模呈指数级增长,容易过拟合

所以我们接下来将会学习CNN架构,CNN架构的参数规模相对较小,且训练速度更快,而且CNN架构可以解决图像识别问题,而MLP不能。

相关文章:

【DAY40】训练和测试的规范写法

内容来自浙大疏锦行python打卡训练营 浙大疏锦行 知识点: 彩色和灰度图片测试和训练的规范写法:封装在函数中展平操作:除第一个维度batchsize外全部展平dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭drop…...

C语言 标准I/O函数全面指南

C标准I/O函数全面指南 本指南详细介绍了C语言中用于文件操作的标准输入/输出函数,包括单字符I/O、字符串I/O、格式化I/O、块I/O以及文件光标操作。每个部分包含函数定义、使用说明和实用示例,适合学习、复习以及博客发布。内容采用清晰的Markdown格式&a…...

el-select 实现分页加载,切换也数滚回到顶部,自定义高度

el-select 实现分页加载&#xff0c;切换也数滚回到顶部&#xff0c;自定义高度 1.html <el-form-item label"俱乐部&#xff1a;" prop"club_id" label-width"120px"><el-select :disabled"Boolean(match_id)" style"w…...

Langchaine4j 流式输出 (6)

Langchaine4j 流式输出 大模型的流式输出是指大模型在生成文本或其他类型的数据时&#xff0c;不是等到整个生成过程完成后再一次性 返回所有内容&#xff0c;而是生成一部分就立即发送一部分给用户或下游系统&#xff0c;以逐步、逐块的方式返回结果。 这样&#xff0c;用户…...

Jenkins:自动化流水线的基石,开启 DevOps 新时代

从持续集成到持续交付的全流程自动化工具 一、什么是 Jenkins&#xff1f; Jenkins 是一款开源的 自动化服务器&#xff0c;专注于持续集成&#xff08;CI&#xff09;和持续交付&#xff08;CD&#xff09;。它通过插件化的架构支持几乎所有的开发、运维和测试工具&#xff…...

学习经验分享【40】目标检测热力图制作

目标检测热力图在学术论文&#xff08;尤其是计算机视觉、深度学习领域&#xff09;中是重要的可视化分析工具和论证辅助手段&#xff0c;可以给论文加分不少。主要作用一是增强论文的可解释性与说服力&#xff1a;论文中常需解释模型 “如何” 或 “为何” 检测到目标&#xf…...

C#里与嵌入式系统W5500网络通讯(3)

有与W5500通讯时,需要使用下面的寄存器: PHYCFGR (W5500 PHY Configuration Register) [R/W] [0x002E] [0b10111XXX] PHYCFGR configures PHY operation mode and resets PHY. In addition, PHYCFGR indicates the status of PHY such as duplex, Speed, Link. 这张表格详细…...

用OpenNI2获取奥比中光Astra Pro输出的深度图(win,linux arm64 x64平台)

搞了一个奥比中光Astra Pro&#xff0c;想在windows平台&#xff0c;和linux rk3588 &#xff08;香橙派&#xff0c;ubuntu2404,debian)上获取深度信息&#xff0c;之前的驱动下载已经不好用了,参考如下 Astra 3D相机选型建议 - 知乎https://zhuanlan.zhihu.com/p/594485674 …...

Unity VR/MR开发-VR设备与适用场景分析

视频讲解链接&#xff1a;【XR马斯维】VR/MR设备与适用场景分析&#xff1f;【UnityVR/MR开发教程--入门】_游戏热门视频...

Linux: network: switch:arp cache更新规则 [chatGPT]

文章目录 介绍概念普通包带有不同的mac,是否更新arp cache?普通包带有相同的mac,是否刷新 aging timeswitch是否会主动学习介绍 关于arp cache在switch侧的行为。有很多问题需要理解。 概念 HP L3 - IP Services Configuration Guide 文档里有写:dynamic arp entry的解说…...

Java网络编程API 1

Java中的网络编程API一共有两套&#xff1a;一套是UDP协议使用的API&#xff1b;另一套是TCP协议使用的API。这篇文章我们先来介绍UDP版本的API&#xff0c;并尝试来写一个回显服务器&#xff08;接收到的请求是什么&#xff0c;返回的响应就是什么&#xff09;。 UDP数据报套…...

Android协程学习

目录 Android上的Kotlin协程介绍基本概念与简单使用示例协程的高级用法 结构化并发线程调度器(Dispatchers)自定义调度器并发:同步 vs 异步 异步并发(async 并行执行)同步顺序执行协程取消与超时 取消机制超时控制异步数据流 Flow协程间通信 使用 Channel使用 StateFlow /…...

Angular报错:cann‘t bind to ngClass since it is‘t a known property of div

遇到的错误&#xff1a; Cant bind to ngClass since it isnt a known property of div这个错误是 Angular 中 最常见的模板编译错误之一&#xff0c;通常出现在你试图使用 ngClass 指令&#xff0c;但 Angular 没有识别它的情况下。 ✅ 错误的根本原因 Angular 不知道 ngCla…...

uniapp+vue3实现CK通信协议(基于jjc-tcpTools)

1. TCP 服务封装 (tcpService.js) export class TcpService {constructor() {this.connections uni.requireNativePlugin(jjc-tcpTools)this.clients new Map() // 存储客户端连接this.servers new Map() // 存储服务端实例}// 创建 TCP 服务端 (字符串模式)createStringSe…...

Python爬虫实战:研究urlparse库相关技术

1 引言 1.1 研究背景与意义 网络爬虫作为互联网数据采集的核心技术,在信息检索、舆情分析、数据挖掘等领域具有广泛应用。随着 Web 技术的发展,现代网站 URL 结构日益复杂,包含路径参数、查询参数、锚点等多种组件,且存在相对路径、URL 编码等问题,给爬虫开发带来了挑战…...

解锁FastAPI与MongoDB聚合管道的性能奥秘

title: 解锁FastAPI与MongoDB聚合管道的性能奥秘 date: 2025/05/20 20:24:47 updated: 2025/05/20 20:24:47 author: cmdragon excerpt: MongoDB聚合管道是一种分阶段处理数据的流水线&#xff0c;通过$match、$group等阶段对文档进行特定操作&#xff0c;具有内存优化和原生操…...

软件工程方法论:在确定性与不确定性的永恒之舞中寻找平衡

更多精彩请访问&#xff1a;通义灵码2.5——基于编程智能体开发Wiki多功能搜索引擎-CSDN博客 当我们谈论“软件工程”时&#xff0c;“工程”二字总暗示着某种如桥梁建造般的精确与可控。然而&#xff0c;软件的本质却根植于人类思维的复杂性与需求的流变之中。软件工程方法论的…...

Unity中的MonoSingleton<T>与Singleton<T>

1.MonoSingleton 代码部分 using UnityEngine;/// <summary> /// MonoBehaviour单例基类 /// 需要挂载到GameObject上使用 /// </summary> public class MonoSingleton<T> : MonoBehaviour where T : MonoSingleton<T> {private static T _instance;…...

怎么通过 jvmti 去 hook java 层函数

使用 JVMTI 手动实现 Android Java 函数 Hook 要通过 JVMTI 手动实现 Android Java 函数 Hook&#xff0c;需要编写 Native 层代码并注入到目标进程中。以下是详细步骤和示例&#xff1a; 一、核心实现原理 JVMTI 提供两种主要 Hook 方式&#xff1a; Method Entry/Exit 事…...

兰亭妙微 | 医疗软件的界面设计能有多专业?

从医疗影像系统到手术机器人控制界面&#xff0c;从便携式病原体检测设备到多平台协同操作系统&#xff0c;兰亭妙微为众多医疗设备研发企业&#xff0c;打造了兼具专业性与可用性的交互界面方案。 我们不仅做设计&#xff0c;更深入理解医疗场景的实际需求&#xff1a; 对精…...

前端原生构建交互式进度步骤组件(Progress Steps)

在现代网页设计中&#xff0c;进度步骤&#xff08;Progress Steps&#xff09; 是一种常见的 UI 模式&#xff0c;常用于引导用户完成注册流程、多步表单、教程或任何需要分步骤操作的场景。本文将带你从零开始构建一个美观且功能完整的 “进度步骤”组件&#xff0c;并详细讲…...

如何给windos11 扩大C盘容量

动不动C盘就慢了&#xff0c;苹果逼着用户换手机&#xff0c;三天两头更新系统&#xff0c;微软也是毫不手软。c盘 从10个G就够用&#xff0c;到100G 也不够&#xff0c;看来通货膨胀是部分行业的。 在 Windows 11 中扩大 C 盘容量&#xff0c;主要取决于磁盘分区布局和可用空…...

【基于阿里云搭建数据仓库(离线)】Data Studio创建资源与函数

Data Studio支持在您的数据分析代码中引用自定义的资源和函数&#xff08;支持MaxCompute、EMR、CDH、Flink&#xff09;&#xff0c;您需要先创建或上传资源、函数至目标工作空间&#xff0c;上传后才可在该工作空间的任务中使用。您可参考本文了解如何使用DataWorks可视化方式…...

Linux_T(Sticky Bit)粘滞位详解

Linux 粘滞位&#xff08;Sticky Bit&#xff09;详解 一、什么是粘滞位&#xff08;Sticky Bit&#xff09; 粘滞位&#xff08;Sticky Bit&#xff09;是 Linux 和 Unix 系统中一种特殊的权限设置&#xff0c;主要应用于目录&#xff0c;其作用是在多人共享访问的目录中&am…...

web3-以太坊智能合约基础(理解智能合约Solidity)

以太坊智能合约基础&#xff08;理解智能合约/Solidity&#xff09; 无需编程经验&#xff0c;也可以帮助你了解Solidity独特的部分&#xff1b;如果本身就有相应的编程经验如java&#xff0c;python等那么学起来也会非常的轻松 一、Solidity和EVM字节码 实际上以太坊链上储存…...

高敏感应用如何保护自身不被逆向?iOS 安全加固策略与工具组合实战(含 Ipa Guard 等)

如果你正在开发一款涉及支付、隐私数据或企业内部使用的 App&#xff0c;那么你可能比多数开发者更早意识到一件事——App 一旦被破解&#xff0c;损失的不只是代码&#xff0c;还有信任与业务逻辑。 在我们为金融类工具、HR 系统 App、数据同步组件等高敏感项目提供支持的过程…...

【C++项目】负载均衡在线OJ系统-2

文章目录 oj_server模块编写oj_server框架的搭建-oj_server/oj_server.cpp 路由框架 oj_model模块编写题目信息设置v1.文件版本-common/util.hpp boost库spilt函数的使用-oj_server/oj_model_file.hpp 文件版本model编写v2.mysql数据库版本1.mysql创建授权用户、建库建表录入操…...

GC1809:高性能24bit/192kHz音频接收芯片解析

1. 芯片概述 GC1809 是数字音频接收芯片&#xff0c;支持IEC60958、S/PDIF、AES3等协议&#xff0c;集成8选1输入切换、低抖动时钟恢复和24bit DAC&#xff0c;适用于家庭影院、汽车音响等高保真场景。 核心特性 高精度&#xff1a;24bit分辨率&#xff0c;动态范围105dB&…...

2025年06月05日Github流行趋势

项目名称&#xff1a;onlook 项目地址url&#xff1a;https://github.com/onlook-dev/onlook项目语言&#xff1a;TypeScript历史star数&#xff1a;16165今日star数&#xff1a;1757项目维护者&#xff1a;Kitenite, drfarrell, spartan-vutrannguyen, apps/devin-ai-integrat…...

flask功能使用总结和完整示例

Flask 功能使用总结与完整示例 一、Flask 核心功能总结 Flask 是轻量级 Web 框架&#xff0c;核心功能包括&#xff1a; 路由系统&#xff1a;通过 app.route 装饰器定义 URL 与函数的映射。模板引擎&#xff1a;默认使用 Jinja2&#xff0c;支持动态渲染 HTML。请求处理&…...