当前位置: 首页 > article >正文

生成模型+两种机器学习范式

生成模型:从数据分布到样本创造

生成模型(Generative Model) 是机器学习中一类能够学习数据整体概率分布,并生成新样本的模型。其核心目标是建模输入数据 x 和标签 y 的联合概率分布 P(x,y),即回答 “数据是如何产生的”。

生成模型的核心能力
  1. 数据生成:通过学习数据分布,生成与训练集相似的新样本(如图像生成、文本生成)。
  2. 概率推断:计算数据的联合概率,用于异常检测、密度估计等任务。
  3. 因果建模:探索数据间的因果关系(如通过因果结构生成符合逻辑的样本)。
典型生成模型举例
  • 变分自编码器(VAE):通过隐变量建模数据分布,将样本编码为潜在向量后解码生成新样本。
  • 生成对抗网络(GAN):通过生成器与判别器的对抗训练,使生成样本接近真实数据分布。
  • 自回归模型(如 GPT 系列):基于序列数据的历史信息,预测下一个 token 的概率分布,逐步生成完整序列。

两种机器学习范式:生成式 vs. 判别式

机器学习的核心范式可分为生成式(Generative) 和判别式(Discriminative),二者在建模目标、应用场景上有本质区别:

一、生成式学习(Generative Learning)
  • 建模目标:学习联合概率分布 P(x,y),即 “输入 x 和标签 y 同时出现的概率”。
  • 核心逻辑:先理解数据如何生成,再通过生成过程进行预测。
  • 数学表达:P(y∣x)=P(x)P(x,y)​,通过联合概率和边缘概率推导条件概率。
  • 典型算法:隐马尔可夫模型(HMM)、朴素贝叶斯、VAE、GAN。
  • 应用场景
    • 样本生成(如图像、文本、语音合成);
    • 小样本学习(通过生成模型扩充数据);
    • 无监督 / 半监督学习(探索数据分布)。
二、判别式学习(Discriminative Learning)
  • 建模目标:直接学习条件概率分布 P(y∣x) 或决策函数 f(x),即 “给定输入 x,预测标签 y 的概率”。
  • 核心逻辑:不关心数据生成过程,只关注不同类别间的边界和区分特征。
  • 数学表达:直接建模输入到输出的映射关系,无需计算联合概率。
  • 典型算法:逻辑回归、支持向量机(SVM)、决策树、神经网络(如 CNN、RNN)。
  • 应用场景
    • 分类与回归(如图像分类、房价预测);
    • 目标检测、语义分割等需要精准判别边界的任务;
    • 实时预测(模型推理速度通常更快)。

相关文章:

生成模型+两种机器学习范式

生成模型:从数据分布到样本创造 生成模型(Generative Model) 是机器学习中一类能够学习数据整体概率分布,并生成新样本的模型。其核心目标是建模输入数据 x 和标签 y 的联合概率分布 P(x,y),即回答 “数据是如何产生的…...

【学习笔记】Python金融基础

Python金融入门 1. 加载数据与可视化1.1. 加载数据1.2. 折线图1.3. 重采样1.4. K线图 / 蜡烛图1.5. 挑战1 2. 计算2.1. 收益 / 回报2.2. 绘制收益图2.3. 累积收益2.4. 波动率2.5. 挑战2 3. 滚动窗口3.1. 创建移动平均线3.2. 绘制移动平均线3.3 Challenge 4. 技术分析4.1. OBV4.…...

在Linux查看电脑的GPU型号

VGA 是指 Video Graphics Array,这是 IBM 于 1987 年推出的一种视频显示标准。 lspci | grep vga 📌 lspci | grep -i vga 的含义 lspci:列出所有连接到 PCI 总线的设备。 grep -i vga:过滤输出,仅显示包含“VGA”字…...

A Execllent Software Project Review and Solutions

The Phoenix Projec: how do we produce software? how many steps? how many people? how much money? you will get it. i am a pretty judge of people…a prank...

windows命令行面板升级Git版本

Date: 2025-06-05 11:41:56 author: lijianzhan Git 是一个 ‌分布式版本控制系统‌ (DVCS),由 Linux 之父 Linus Torvalds 于 2005 年开发,用于管理 Linux 内核开发。它彻底改变了代码协作和版本管理的方式,现已成为软件开发的事实标准工具&…...

Langgraph实战--自定义embeding

概述 在Langgraph中我想使用第三方的embeding接口来实现文本的embeding。但目前langchain只提供了两个类,一个是AzureOpenAIEmbeddings,一个是:OpenAIEmbeddings。通过ChatOpenAI无法使用第三方的接口,例如:硅基流平台…...

大故障,阿里云核心域名疑似被劫持

2025年6月5日凌晨,阿里云多个服务突发异常,罪魁祸首居然是它自家的“核心域名”——aliyuncs.com。包括对象存储 OSS、内容分发 CDN、镜像仓库 ACR、云解析 DNS 等服务在内,全部受到波及,用户业务连夜“塌房”。 更让人惊讶的是&…...

什么是「镜像」?(Docker Image)

🧊 什么是「镜像」?(Docker Image) 💡 人话解释: Docker 镜像就像是一个装好程序的“快照包”,里面包含了程序本体、依赖库、运行环境,甚至是系统文件。 你可以把镜像理解为&…...

SQLMesh实战:用虚拟数据环境和自动化测试重新定义数据工程

在数据工程领域,软件工程实践(如版本控制、测试、CI/CD)的引入已成为趋势。尽管像 dbt 这样的工具已经推动了数据建模的标准化,但在测试自动化、工作流管理等方面仍存在不足。 SQLMesh 应运而生,旨在填补这些空白&…...

服务器健康摩尔斯电码:深度解读S0-S5状态指示灯

当服务器机柜中闪烁起神秘的琥珀色灯光,运维人员的神经瞬间绷紧——这些看似简单的Sx指示灯,实则是服务器用硬件语言发出的求救信号。掌握这套"摩尔斯电码",等于拥有了预判故障的透视眼。 一、状态指示灯:服务器的生命体…...

设计模式基础概念(行为模式):模板方法模式 (Template Method)

概述 模板方法模式是一种行为设计模式, 它在超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 是基于继承的代码复用的基本技术,模板方法模式的类结构图中,只有继承关系。 需要开发抽象类和具体子…...

传统业务对接AI-AI编程框架-Rasa的业务应用实战(番外篇2)-- Rasa 训练数据文件的清理

经过我的【传统业务对接AI-AI编程框架-Rasa的业务应用实战】系列 1-6 的表述 已经实现了最初的目标:将传统平台业务(如发票开具、审核、计税、回款等)与智能交互结合,通过用户输入提示词或语音,识别用户意图和实体信…...

LVDS的几个关键电压概念

LVDS的几个关键电压概念 1.LVDS的直流偏置 直流偏置指的是信号的电压围绕的基准电压,信号的中心电压。在LVDS中,信号是差分的, 两根线之间的电压差表示数据,很多时候两根线的电压不是在0v开始变化的,而是在某个 固定的…...

2023年ASOC SCI2区TOP,随机跟随蚁群优化算法RFACO,深度解析+性能实测

目录 1.摘要2.连续蚁群优化算法ACOR3.随机跟随策略4.结果展示5.参考文献6.代码获取7.算法辅导应用定制读者交流 1.摘要 连续蚁群优化是一种基于群体的启发式搜索算法(ACOR),其灵感来源于蚁群的路径寻找行为,具有结构简单、控制参…...

DLL动态库实现文件遍历功能(Windows编程)

源文件: 文件遍历功能的动态库,并支持用户注册回调函数处理遍历到的文件 a8f80ba 周不才/cpp_linux study - Gitee.com 知识准备 1.Windows中的数据类型 2.DLL导出/导入宏 使用__declspec(dllexport)修饰函数,将函数标记为导出函数存放到…...

Java Map完全指南:从基础到高级应用

文章目录 1. Map接口概述Map的基本特性 2. Map接口的核心方法基本操作方法批量操作方法 3. 主要实现类详解3.1 HashMap3.2 LinkedHashMap3.3 TreeMap3.4 ConcurrentHashMap 4. 高级特性和方法4.1 JDK 1.8新增方法4.2 Stream API结合使用 5. 性能比较和选择建议性能对比表选择建…...

jvm 垃圾收集算法 详解

垃圾收集算法 分代收集理论 垃圾收集器的理论基础,它建立在两个分代假说之上: 弱分代假说:绝大多数对象都是朝生夕灭的。强分代假说:熬过越多次垃圾收集过程的对象就越难以消亡。 这两个分代假说共同奠定了多款常用的垃圾收集…...

[特殊字符] 深入理解 Linux 内核进程管理:架构、核心函数与调度机制

Linux 内核作为一个多任务操作系统,其进程管理子系统是核心组成部分之一。无论是用户应用的运行、驱动行为的触发,还是系统调度决策,几乎所有操作都离不开进程的创建、调度与销毁。本文将从进程的概念出发,深入探讨 Linux 内核中进…...

Nginx Stream 层连接数限流实战ngx_stream_limit_conn_module

1.为什么需要连接数限流? 数据库/Redis/MQ 连接耗资源:恶意脚本或误配可能瞬间占满连接池,拖垮后端。防御慢速攻击:层叠式限速(连接数+带宽)可阻挡「Slow Loris」之类的 TCP 低速洪水。公平接入…...

Spring Boot 定时任务的使用

前言 在实际开发中,我们经常需要实现定时任务的功能,例如每天凌晨执行数据清理、定时发送邮件等。Spring Boot 提供了非常便捷的方式来实现定时任务,本文将详细介绍如何在 Spring Boot 中使用定时任务。 一、Spring Boot 定时任务简介 Spr…...

Flutter:下拉框选择

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/d4 b70dec92594838a8b2c130717938aa.png) 文档地址dropdown_button2 // 限价、市价 状态final List<String> orderTypes [普通委托, 市价委托];String? selectedOrderType 普通委托;changeOrderType(String …...

SpringAI(GA):Nacos2下的分布式MCP

原文链接地址&#xff1a;SpringAI(GA)&#xff1a;Nacos2下的分布式MCP 教程说明 说明&#xff1a;本教程将采用2025年5月20日正式的GA版&#xff0c;给出如下内容 核心功能模块的快速上手教程核心功能模块的源码级解读Spring ai alibaba增强的快速上手教程 源码级解读 版…...

AC68U刷梅林384/386版本后不能 降级回380,升降级解决办法

前些时间手贱更新了路由器的固件&#xff0c;384.18版本。结果发现了一堆问题&#xff0c;比如客户端列表加载不出来&#xff0c;软件中心打不开等等。想着再刷一下新的固件&#xff0c;结果死活刷不上去。最后翻阅了大量前辈的帖子找到了相关的处理办法。现在路由器中开启SSH&…...

[AI绘画]sd学习记录(二)文生图参数进阶

目录 7.高分辨率修复&#xff1a;以小博大8.细化器&#xff08;Refiner&#xff09;&#xff1a;两模型接力9.随机数种子&#xff08;Seed&#xff09;&#xff1a;复现图片吧 本文接续https://blog.csdn.net/qq_23220445/article/details/148460878?spm1001.2014.3001.5501…...

CRM管理系统中的客户分类与标签管理技巧:提升转化率的核心策略

在客户关系管理(CRM)领域&#xff0c;有效的客户分类与标签管理是提升销售效率、优化营销ROI的关键。据统计&#xff0c;使用CRM管理系统进行科学客户分层的企业&#xff0c;客户转化率平均提升35%(企销客数据)。本文将深入解析在CRM管理软件中实施客户分类与标签管理的最佳实践…...

怎么解决cesium加载模型太黑,程序崩溃,不显示,位置不对模型太大,Cesium加载gltf/glb模型后变暗

有时候咱们cesium加载模型时候型太黑&#xff0c;程序崩溃&#xff0c;不显示&#xff0c;位置不对模型太大怎么办 需要处理 可以联系Q:424081801 谢谢 需要处理 可以联系Q:424081801 谢谢...

【AI系列】BM25 与向量检索

博客目录 引言&#xff1a;信息检索技术的演进第一部分&#xff1a;BM25 算法详解第二部分&#xff1a;向量检索技术解析第三部分&#xff1a;BM25 与向量检索的对比分析第四部分&#xff1a;融合与创新&#xff1a;混合检索系统 引言&#xff1a;信息检索技术的演进 在信息爆…...

windows10搭建nfs服务器

windows10搭建nfs服务器 Windows10搭建NFS服务 - fuzidage - 博客园...

simulink这边重新第二次仿真时,直接UE5崩溃,然后simulink没有响应

提问 &#xff1a; simulink这边重新第二次仿真时&#xff0c;直接UE5崩溃&#xff0c;然后simulink没有响应 simulink和UE5仿真的时候&#xff0c;simulink这边先停止仿真&#xff08;也就是官方要求的顺序——注意&#xff1a;如果先在UE5那边停止仿真&#xff0c;如果UE5这…...

react 常见的闭包陷阱深入解析

一、引子 先来看一段代码,你能说出这段代码的问题在哪吗? const [count, setCount] = useState(0); useEffect(() => {const timer = setTimeout(() => {setCount(count + 1);}, 1000);return () => clearTimeout(timer); }, []);正确答案: 这段代码存在闭包陷阱…...