当前位置: 首页 > article >正文

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换

即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。

二、多线程一定要快吗?

这跟我们CPU核数有一定的关系,当为单核处理器时。观看以下代码:

public class ConcurrencyTest {
private static final long count = 10000l;
public static void main(String[] args) throws InterruptedException {
concurrency();
serial();
}
private static void concurrency() throws InterruptedException {
long start = System.currentTimeMillis();
Thread thread = new Thread(new Runnable() {
@Override
public void run() {
int a = 0;
for (long i = 0; i < count; i++) {
a += 5;
}
}
});
thread.start();
int b = 0;
for (long i = 0; i < count; i++) {
b--;
}
long time = System.currentTimeMillis() - start;
thread.join();
System.out.println("concurrency :" + time+"ms,b="+b);
}
private static void serial() {
long start = System.currentTimeMillis();
int a = 0;
for (long i = 0; i < count; i++) {
a += 5;
}
int b = 0;
for (long i = 0; i < count; i++) {
b--;
}
long time = System.currentTimeMillis() - start;
System.out.println("serial:" + time+"ms,b="+b+",a="+a);
}
}

案例来自于Java并发编程的艺术。

在执行的次数不同时,串行和并行所执行的时间之间的大小之比是不同的。当循环次数较少时,串行要比并行更快一些。

三、如何减少上下文切换

减少上下文切换的方式有无锁并发编程、CAS算法、使用最少线程和使用协程。

无锁并发编程:多线程争抢锁时会触发上下文的切换,所以多线程处理数据,使用一些方法来避免使用到锁。

CAS算法:Java的Atomic包使用CAS来更新数据,不需要加锁。

使用最少线程:避免创建不需要的线程。

协程单线程里实现多任度,并在单线程里持多个任务间的切

四、死锁

以下代码会产生死锁:

public class DeadLockDemo {
privat static String A = "A";
private static String B = "B";
public static void main(String[] args) {
new DeadLockDemo().deadLock();
}
private void deadLock() {
Thread t1 = new Thread(new Runnable() {
@Override
publicvoid run() {
synchronized (A) {
try { Thread.currentThread().sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (B) {
System.out.println("1");
}
}
}
});
Thread t2 = new Thread(new Runnable() {
@Override
publicvoid run() {
synchronized (B) {
synchronized (A) {
System.out.println("2");
}
}
}
});
t1.start();
t2.start();
}
}

避免死锁的几个常用的方法:

避免一个线程同时获得多个锁。

避免一个线程在锁内同时占用多个资源,尽量保证一个锁只占用一个资源。

尝试获取锁时,可以使用tryLock(timeout)来代替内部锁机制。

对于数据库锁,加锁和解锁必须在一个数据库连接内。

五、资源限制

什么是资源限制

资源限制是指在进行并发编程时,程序的执行速度受限于计算机硬件资源或软件资源。

例如,服务器的带宽只有2Mb/s,某个资源的下载速度是1Mb/s每秒,系统启动10个线程下载资

源,下载速度不会变成10Mb/s,所以在进行并发编程时,要考虑这些资源的限制。硬件资源限

制有带宽的上传/下载速度、硬盘读写速度和CPU的处理速度。软件资源限制有数据库的连接

数和socket连接数等。

如何解决资源限制的问题

对于硬件资源限制,可以考虑使用集群并行执行程序。既然单机的资源有限制,那么就让

程序在多机上运行。比如使用ODPS、Hadoop或者自己搭建服务器集群,不同的机器处理不同

的数据。可以通过“数据ID%机器数”,计算得到一个机器编号,然后由对应编号的机器处理这

笔数据。

对于软件资源限制,可以考虑使用资源池将资源复用。比如使用连接池将数据库和Socket

连接复用,或者在调用对方webservice接口获取数据时,只建立一个连接。

六、volatile的应用

先来看一下CPU常用术语。

volatile的原理:

七、synchronized的实现原理与应用

sync实现同步的基础:java中每个对象都可以作为锁。具体表现为以下三种:

        对于普通同步方法来说:锁的是当前实例对象。

        对于静态同步方法来说:锁的是当前类的Class对象。

        对于同步方法块来说:锁的是sync后括号里配置的对象。

7.1、Java对象头

sync用的锁是存放在Java对象头中的。

Java对象头里的Mark Word里默认存储对象的HashCode、分代年龄和锁标记位。32位JVM

的Mark Word的默认存储结构如表:

Mark Word中存储的数据会随着锁标志位的变化而变化:

7.2、sync锁的升级与对比

sync锁一共有四个状态:无锁->偏向锁->轻量级锁->重量级锁。

锁只可以升级不可以降级。

偏向锁:

当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需简单地测试一下对象头的MarkWord里是否存储着指向当前线程的偏向锁。如果测试成功,表示线程已经获得了锁。如果测试失败,则需要再测试一下MarkWord中偏向锁的标识是否设置成1(表示当前是偏向锁):如果没有设置,则使用CAS竞争锁;如果设置了,则尝试使用CAS将对象头的偏向锁指向当前线程。

偏向锁的获取和撤销流程

偏向锁使用了一种等到竞争出现才释放锁的机制,所以当其他线程尝试竞争偏向锁时,

持有偏向锁的线程才会释放锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有正

在执行的字节码)。它会首先暂停拥有偏向锁的线程,然后检查持有偏向锁的线程是否活着,

如果线程不处于活动状态,则将对象头设置成无锁状态;如果线程仍然活着,拥有偏向锁的栈

会被执行,遍历偏向对象的锁记录,栈中的锁记录和对象头的Mark Word要么重新偏向于其他

线程,要么恢复到无锁或者标记对象不适合作为偏向锁,最后唤醒暂停的线程。图2-1中的线

程1演示了偏向锁初始化的流程,线程2演示了偏向锁撤销的流程。

7.3、轻量级锁

(1)轻量级锁加锁
线程在执行同步块之前,JVIM会先在当前线程的栈桢中创建用于存储锁记录的空间,并
将对象头中的MarkWord复制到锁记录中,官方称为Displaced MarkWord。然后线程尝试使用
CAS将对象头中的MarkWord替换为指向锁记录的指针。如果成功,当前线程获得锁,如果失
败,表示其他线程竞争锁,当前线程便尝试使用自旋来获取锁。
(2)轻量级锁解锁
轻量级解锁时,会使用原子的CAS操作将DisplacedMarkWord替换回到对象头,如果成
功,则表示没有竞争发生。如果失败,表示当前锁存在竞争,锁就会膨胀成重量级锁。图2-2是
两个线程同时争夺锁,导致锁膨胀的流程图。

·锁的优缺点

八、原子操作的实现原理

先来看一些相关的术语

有些处理器使用基于对缓存加锁或者总线加锁的方式来保证多处理器之间的原子操作。

1)使用总线锁来保证原子性。

处理器使用总线锁就是来解决这个问题的。所谓总线锁就是使用处理器提供的一个

LOCK#信号,当一个处理器在总线上输出此信号时,其他处理器的请求将被阻塞住,那么该

处理器可以独占共享内存。

2)使用缓存锁来保证原子性

频繁使用的内存会缓存在处理器的L1、L2和L3高速缓存里,那么原子操作就可以直接在

处理器内部缓存中进行,并不需要声明总线锁,所谓“缓存锁定”是指内存区域如果被缓存在处理器的缓存 行中,并且在Lock操作期间被锁定,那么当它执行锁操作回写到内存时,处理器不在总线上声言LOCK#信号,而是修改内部的内存地址,并允许它的缓存一致性机制来保证操作的原子

性,因为缓存一致性机制会阻止同时修改由两个以上处理器缓存的内存区域数据,当其他处

理器回写已被锁定的缓存行的数据时,会使缓存行无效。

但是有两种情况处理器不会使用缓存锁定。

第一种情况是:当操作的数据不能被缓存在处理器内部,或操作的数据跨多个缓存行

(cache line)时,则处理器会调用总线锁定。

第二种情况是:有些处理器不支持缓存锁定。对于Intel 486和Pentium处理器,就算锁定的

内存区域在处理器的缓存行中也会调用总线锁定。

九、Java如何实现原子操作

中Java中可以使用锁和循环CAS来实现原子操作。

以下是使用循环CAS实现线程安全的操作。

private AtomicInteger atomicI = new AtomicInteger(0);
private int i = 0;
public static void main(String[] args) {
final Counter cas = new Counter();
List<Thread> ts = new ArrayList<Thread>(600);
long start = System.currentTimeMillis();
for (int j = 0; j < 100; j++) {
Thread t = new Thread(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10000; i++) {
cas.count();
cas.safeCount();
}
}
});
ts.add(t);
}
for (Thread t : ts) {
t.start();
}
// 等待所有线程执行完成
for (Thread t : ts) {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println(cas.i);
System.out.println(cas.atomicI.get());
System.out.println(System.currentTimeMillis() - start);
}
/** * 使用CAS实现线程安全计数器 */
private void safeCount() {
for (;;) {
int i = atomicI.get();
boolean suc = atomicI.compareAndSet(i, ++i);
if (suc) {
break;
}
}
}
/**
* 非线程安全计数器
*/
private void count() {
i++;
}
}

 JDK的并发包里提供了一些类来支持原子操作,如AtomicBoolean(用原子 方式更新的boolean值)、AtomicInteger(用原子方式更新的int值)和AtomicLong(用原子方式更 新的long值)。这些原子包装类还提供了有用的工具方法,比如以原子的方式将当前值自增1和 自减1。 

CAS实现原子操作的三大问题:

ABA问题。

循环时间长开销大。

只能保证一个共享变量的原子操作。

相关文章:

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...