当前位置: 首页 > news >正文

Mongodb 多文档聚合操作处理方法二(Map-reduce 函数)

聚合

聚合操作处理多个文档并返回计算结果。您可以使用聚合操作来:

  • 将多个文档中的值分组在一起。

  • 对分组数据执行操作以返回单个结果。

  • 分析数据随时间的变化。

要执行聚合操作,您可以使用:

  • 聚合管道

  • 单一目的聚合方法

  • Map-reduce 函数

Map-reduce 函数

在mongoshell 中,该db.collection.mapReduce() 方法是命令的包装器mapReduce。下面的例子使用该db.collection.mapReduce()方法。

定义: db.collection.mapReduce(map,reduce, { <options> })

该map功能有以下要求:

  • 在map函数中,将当前文档引用为函数中的this。

  • 该map函数不应出于任何原因访问数据库。

  • 该map函数应该是纯粹的,或者对函数之外没有影响(即副作用)。

  • 该map函数可以选择调用emit(key,value)任意次数来创建key与关联的输出文档value。

# 原型如下:
function() {...emit(key, value);
}

该reduce函数表现出以下行为:

  • 该reduce函数不应访问数据库,即使是执行读取操作。

  • 该reduce功能不应影响外部系统。

  • reduceMongoDB 可以针对同一个键多次调用该函数。在这种情况下,该键的函数的先前输出将成为该键的reduce 下一个函数调用的输入值之一 。

  • 该reduce函数可以访问参数中定义的变量scope。

# 该reduce函数具有以下原型:
function(key, values) {...return result;
}

插入测试数据。如下:

sit_rs1:PRIMARY> db.orders.insertMany([
...    { _id: 1, cust_id: "A", ord_date: new Date("2023-06-01"), price: 15, items: [ { sku: "apple", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "1" },
...    { _id: 2, cust_id: "A", ord_date: new Date("2023-06-08"), price: 60, items: [ { sku: "apple", qty: 8, price: 2.5 }, { sku: "banana", qty: 5, price: 10 } ], status: "1" },
...    { _id: 3, cust_id: "B", ord_date: new Date("2023-06-08"), price: 55, items: [ { sku: "apple", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "1" },
...    { _id: 4, cust_id: "B", ord_date: new Date("2023-06-18"), price: 26, items: [ { sku: "apple", qty: 10, price: 2.5 } ], status: "1" },
...    { _id: 5, cust_id: "B", ord_date: new Date("2023-06-19"), price: 40, items: [ { sku: "banana", qty: 5, price: 10 } ], status: "1"},
...    { _id: 6, cust_id: "C", ord_date: new Date("2023-06-19"), price: 38, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "1" },
...    { _id: 7, cust_id: "C", ord_date: new Date("2023-06-20"), price: 21, items: [ { sku: "apple", qty: 10, price: 2.5 } ], status: "1" },
...    { _id: 8, cust_id: "D", ord_date: new Date("2023-06-20"), price: 76, items: [ { sku: "banana", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "1" },
...    { _id: 9, cust_id: "D", ord_date: new Date("2023-06-20"), price: 51, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "apple", qty: 10, price: 2.5 } ], status: "1" },
...    { _id: 10, cust_id: "D", ord_date: new Date("2023-06-23"), price: 23, items: [ { sku: "apple", qty: 10, price: 2.5 } ], status: "1" }
... ])
{"acknowledged" : true,"insertedIds" : [1,2,3,4,5,6,7,8,9,10]
}
sit_rs1:PRIMARY> db.orders.find()
{ "_id" : 4, "cust_id" : "B", "ord_date" : ISODate("2023-06-18T00:00:00Z"), "price" : 26, "items" : [ { "sku" : "apple", "qty" : 10, "price" : 2.5 } ], "status" : "1" }
{ "_id" : 6, "cust_id" : "C", "ord_date" : ISODate("2023-06-19T00:00:00Z"), "price" : 38, "items" : [ { "sku" : "carrots", "qty" : 10, "price" : 1 }, { "sku" : "apples", "qty" : 10, "price" : 2.5 } ], "status" : "1" }
{ "_id" : 1, "cust_id" : "A", "ord_date" : ISODate("2023-06-01T00:00:00Z"), "price" : 15, "items" : [ { "sku" : "apple", "qty" : 5, "price" : 2.5 }, { "sku" : "apples", "qty" : 5, "price" : 2.5 } ], "status" : "1" }
{ "_id" : 2, "cust_id" : "A", "ord_date" : ISODate("2023-06-08T00:00:00Z"), "price" : 60, "items" : [ { "sku" : "apple", "qty" : 8, "price" : 2.5 }, { "sku" : "banana", "qty" : 5, "price" : 10 } ], "status" : "1" }
{ "_id" : 9, "cust_id" : "D", "ord_date" : ISODate("2023-06-20T00:00:00Z"), "price" : 51, "items" : [ { "sku" : "carrots", "qty" : 5, "price" : 1 }, { "sku" : "apples", "qty" : 10, "price" : 2.5 }, { "sku" : "apple", "qty" : 10, "price" : 2.5 } ], "status" : "1" }
{ "_id" : 3, "cust_id" : "B", "ord_date" : ISODate("2023-06-08T00:00:00Z"), "price" : 55, "items" : [ { "sku" : "apple", "qty" : 10, "price" : 2.5 }, { "sku" : "pears", "qty" : 10, "price" : 2.5 } ], "status" : "1" }
{ "_id" : 5, "cust_id" : "B", "ord_date" : ISODate("2023-06-19T00:00:00Z"), "price" : 40, "items" : [ { "sku" : "banana", "qty" : 5, "price" : 10 } ], "status" : "1" }
{ "_id" : 7, "cust_id" : "C", "ord_date" : ISODate("2023-06-20T00:00:00Z"), "price" : 21, "items" : [ { "sku" : "apple", "qty" : 10, "price" : 2.5 } ], "status" : "1" }
{ "_id" : 8, "cust_id" : "D", "ord_date" : ISODate("2023-06-20T00:00:00Z"), "price" : 76, "items" : [ { "sku" : "banana", "qty" : 5, "price" : 10 }, { "sku" : "apples", "qty" : 10, "price" : 2.5 } ], "status" : "1" }
{ "_id" : 10, "cust_id" : "D", "ord_date" : ISODate("2023-06-23T00:00:00Z"), "price" : 23, "items" : [ { "sku" : "apple", "qty" : 10, "price" : 2.5 } ], "status" : "1" }

示例:按客户统计

对集合 orders 执行map-reduce操作, 按 cust_id 进行分组, 然后统计每个客户的 price 计算总和,如下:

首先, 我们需要 定义map函数来处理每个输入文档:

  • 在函数中,this指的是map-reduce操作正在处理的文档。
  • 该函数将每个文档的 price 映射为 cust_id,并发出 cust_id 和 price 。
sit_rs1:PRIMARY> var myMapFun = function() {
...    emit(this.cust_id, this.price);
... };sit_rs1:PRIMARY> print(myMapFun)
function() {emit(this.cust_id, this.price);
}

然后,用两个参数 keyCustId 和 valuesPrices 定义相应的reduce函数。 这里需要调用数组的 sum 方法计算客户订单总价。

  • valuesPrices 是一个数组,其元素是map函数发出的price 字段的值,并按 keyCustId 分组。
  • 该函数将 valuesPrice 数组缩减为其元素的总和
# 计算数组元素总和
sit_rs1:PRIMARY> Array.sum([2,2,6,8])
18# 计算数组平均值
sit_rs1:PRIMARY> Array.avg([1,2,3])
2sit_rs1:PRIMARY> var myReduceFun = function(keyCustId, valuesPrices) {
...    return Array.sum(valuesPrices);
... };sit_rs1:PRIMARY> print(myReduceFun)
function(keyCustId, valuesPrices) {return Array.sum(valuesPrices);
}

最后,使用 myMapFun 函数和 myReduceFun 函数对集合 orders 中的所有文档执行map-reduce统计:

  • out: 指定map-reduce操作结果的位置。您可以输出到集合、通过操作输出到集合或内联输出。
  • 此操作将结果输出到名为 的集合 map_reduce_out。如果该 map_reduce_out 集合已存在,则该操作将使用此 Map-Reduce 操作的结果替换内容。
sit_rs1:PRIMARY> db.orders.mapReduce(
...    myMapFun,
...    myReduceFun,
...    { out: "map_reduce_out" }
... )
{"result" : "map_reduce_out","ok" : 1,"$clusterTime" : {"clusterTime" : Timestamp(1690259241, 6),"signature" : {"hash" : BinData(0,"Kur+ueslJYcT5oExd8ujPIC/J3Q="),"keyId" : NumberLong("7205479298910650370")}},"operationTime" : Timestamp(1690259241, 6)
}

查询 map_reduce_out 集合以验证结果是否正确:

sit_rs1:PRIMARY> db.map_reduce_out.find().sort( { _id: 1 } )
{ "_id" : "A", "value" : 75 }
{ "_id" : "B", "value" : 121 }
{ "_id" : "C", "value" : 59 }
{ "_id" : "D", "value" : 150 }# 检查 cust_id 为 A 的客户, 总和是 75 正确
sit_rs1:PRIMARY> db.orders.find({ "cust_id" : "A"}, {"price": 1})
{ "_id" : 1, "price" : 15 }
{ "_id" : 2, "price" : 60 }# 检查 cust_id 为 B 的客户,总和是 121 正确
sit_rs1:PRIMARY> db.orders.find({ "cust_id" : "B"}, {"price": 1})
{ "_id" : 4, "price" : 26 }
{ "_id" : 3, "price" : 55 }
{ "_id" : 5, "price" : 40 }

示例:按日期统计

按日期统计,和上面示例一样,只需要把 map 函数重新定义如下,将每个文档的 price 映射为 ord_date,并发出 ord_date 和 price 。

sit_rs1:PRIMARY> var myMapFun2 = function() {
...     emit(this.ord_date, this.price);
... };sit_rs1:PRIMARY> print(myMapFun2)
function() {emit(this.ord_date, this.price);
}

然后,用两个参数 keyOrdDate 和 valuesPrices 定义相应的reduce函数。 这里需要调用数组的 avg 方法计算平均客单价。

  • valuesPrices 是一个数组,其元素是map函数发出的 price 字段的值,并按 keyOrdDate 分组。
  • 该函数将 valuesPrice 数组缩减为其元素的总和的平均值
sit_rs1:PRIMARY> var myReduceFun2 = function(keyOrdDate, valuesPrices) {
...    return Array.avg(valuesPrices);
... };sit_rs1:PRIMARY> print(myReduceFun2)
function(keyOrdDate, valuesPrices) {return Array.avg(valuesPrices);
}

最后,使用 myMapFun2 函数和 myReduceFun2 函数对集合 orders 中的所有文档执行map-reduce统计:

sit_rs1:PRIMARY> db.orders.mapReduce(
...    myMapFun2,
...    myReduceFun2,
...    { out: "map_reduce_out2" }
... )
{"result" : "map_reduce_out2","ok" : 1,"$clusterTime" : {"clusterTime" : Timestamp(1690265083, 8),"signature" : {"hash" : BinData(0,"pCWskY3HjLGEjSk00ARYdZKECDE="),"keyId" : NumberLong("7205479298910650370")}},"operationTime" : Timestamp(1690265083, 8)
}

查询 map_reduce_out2 集合以验证结果是否正确:

sit_rs1:PRIMARY> db.map_reduce_out2.find()
{ "_id" : ISODate("2023-06-08T00:00:00Z"), "value" : 57.5 }
{ "_id" : ISODate("2023-06-01T00:00:00Z"), "value" : 15 }
{ "_id" : ISODate("2023-06-18T00:00:00Z"), "value" : 26 }
{ "_id" : ISODate("2023-06-20T00:00:00Z"), "value" : 49.333333333333336 }
{ "_id" : ISODate("2023-06-23T00:00:00Z"), "value" : 23 }
{ "_id" : ISODate("2023-06-19T00:00:00Z"), "value" : 39 }# 检查日期2023-06-08的订单平均值
sit_rs1:PRIMARY> db.orders.find({ "ord_date" : ISODate("2023-06-08T00:00:00Z")}, {"price": 1})
{ "_id" : 2, "price" : 60 }
{ "_id" : 3, "price" : 55 }
sit_rs1:PRIMARY> print((60+55)/2)
57.5# 检查日期2023-06-20的订单平均值
sit_rs1:PRIMARY> db.orders.find({ "ord_date" : ISODate("2023-06-20T00:00:00Z")}, {"price": 1})
{ "_id" : 9, "price" : 51 }
{ "_id" : 7, "price" : 21 }
{ "_id" : 8, "price" : 76 }sit_rs1:PRIMARY> print((51+21+76)/3)
49.333333333333336

对于需要自定义功能的 Map-Reduce 操作,MongoDB 从 4.4 版本开始提供 $accumulator 和 $function 聚合运算符。使用这些运算符在 JavaScript 中自定义聚合表达式。

  • 聚合管道作为 Map-Reduce 的替代方案, 聚合管道提供比 Map-Reduce 操作更好的性能和可用性。

  • 可以使用聚合管道运算符(例如 $group、$merge等)重写 Map-reduce 操作。

相关文章:

Mongodb 多文档聚合操作处理方法二(Map-reduce 函数)

聚合 聚合操作处理多个文档并返回计算结果。您可以使用聚合操作来&#xff1a; 将多个文档中的值分组在一起。 对分组数据执行操作以返回单个结果。 分析数据随时间的变化。 要执行聚合操作&#xff0c;您可以使用&#xff1a; 聚合管道 单一目的聚合方法 Map-reduce 函…...

ant design vue j-modal 修改高度

问题描述 今天在项目中遇到关于j-modal组件修改弹窗大小问题&#xff0c;我尝试使用直接使用:height"300"&#xff0c;没用效果&#xff0c;弹窗大小依然和没改之前一样&#xff0c;后来找到了这种方式可以去修改j-modal弹窗大小&#xff0c;下面来看下代码实现&…...

spring学习笔记七

一、自动装配 1.1、BookDao接口和实现类 public interface BookDao {void save(); } public class BookDaoImpl implements BookDao {public void save(){System.out.println("book dao save......");} } 1.2、BookService接口和实现类 public interface BookSer…...

hw技战法整理参考

目录 IP溯源反制 账户安全策略及预警 蜜罐部署联动方案...

uniapp 全局数据(globalData)的设置,获取,更改

globalData&#xff0c;这是一种简单的全局变量机制。这套机制在uni-app里也可以使用&#xff0c;并且全端通用 因为uniapp基本上都是将页面&#xff0c;或者页面中相同的部分&#xff0c;进行组件化&#xff0c;所以会存在父&#xff0c;子&#xff0c;&#xff08;子&#xf…...

Profinet转EtherNet/IP网关连接AB PLC的应用案例

西门子S7-1500 PLC&#xff08;profinet&#xff09;与AB PLC以太网通讯&#xff08;EtherNet/IP&#xff09;。本文主要介绍捷米特JM-EIP-PN的Profinet转EtherNet/IP网关&#xff0c;连接西门子S7-1500 PLC与AB PLC 通讯的配置过程&#xff0c;供大家参考。 1, 新建工程&…...

Python组合模式介绍、使用方法

一、Python组合模式介绍 概念&#xff1a; 组合模式(Composite Pattern)是一种结构型设计模式&#xff0c;它通过将对象组合成树状结构来表示“整体/部分”层次结构&#xff0c;让客户端可以以相同的方式处理单个对象和组合对象。 功能&#xff1a; 统一对待组合对象和叶子对…...

生成模型和判别模型工作原理介绍

您解决的大多数机器学习和深度学习问题都是从生成模型和判别模型中概念化的。在机器学习中,人们可以清楚地区分两种建模类型: 将图像分类为狗或猫属于判别性建模生成逼真的狗或猫图像是一个生成建模问题神经网络被采用得越多,生成域和判别域就增长得越多。要理解基于这些模型…...

shardingsphere读写分离配置

注&#xff1a; 如果是升级之前的单库单表&#xff0c;要将之前的 数据库接池 druid-spring-boot-starter 注释掉&#xff0c;换成 druid&#xff0c;否则无法连接数据库。 原因&#xff1a; 因为数据连接池的starter&#xff08;比如druid&#xff09;可能会先加载并且其创…...

登录报错 “msg“:“Request method ‘GET‘ not supported“,“code“:500

1. 登录失败 2. 排查原因, 把 PostMapping请求注释掉, 或改成GetMapping请求就不会报错 3. 找到SecurityConfig.java , 新增 .antMatchers("/**/**").permitAll() //匹配允许所有路径 4. 登录成功...

Python 日期和时间

Python 日期和时间 Python 程序能用很多方式处理日期和时间&#xff0c;转换日期格式是一个常见的功能。 Python 提供了一个 time 和 calendar 模块可以用于格式化日期和时间。 时间间隔是以秒为单位的浮点小数。 每个时间戳都以自从1970年1月1日午夜&#xff08;历元&…...

pytorch的发展历史,与其他框架的联系

我一直是这样以为的&#xff1a;pytorch的底层实现是c(这一点没有问题&#xff0c;见下边的pytorch结构图),然后这个部分顺理成章的被命名为torch,并提供c接口,我们在python中常用的是带有python接口的&#xff0c;所以被称为pytorch。昨天无意中看到Torch是由lua语言写的&…...

Kibana-elastic--Elastic Stack--ELK Stack

Kibana 是什么&#xff1f; | Elastic 将数据转变为结果、响应和解决方案 使用 Kibana 针对大规模数据快速运行数据分析&#xff0c;以实现可观测性、安全和搜索。对来自任何来源的任何数据进行全面透彻的分析&#xff0c;从威胁情报到搜索分析&#xff0c;从日志到应用程序监测…...

Docker复杂命令便捷操作

启动所有状态为Created的容器 要启动所有状态为"created"的Docker容器&#xff0c;可以使用以下命令&#xff1a; docker container start $(docker container ls -aq --filter "statuscreated")上述命令执行了以下步骤&#xff1a; docker container l…...

Python中的datetime模块

time模块用于取得UNIX纪元时间戳&#xff0c;并加以处理。但是&#xff0c;如果以方便的格式显示日期&#xff0c;或对日期进行算数运算&#xff0c;就应该使用datetime模块。 目录 1. datetime数据类型 1&#xff09; datetime.datetime.now()表示特定时刻 2&#xff09;da…...

Flutter - 微信朋友圈、十字滑动效果(微博/抖音个人中心效果)

demo 地址: https://github.com/iotjin/jh_flutter_demo 代码不定时更新&#xff0c;请前往github查看最新代码 前言 一般APP都有类似微博/抖音个人中心的效果&#xff0c;支持上下拉刷新&#xff0c;并且顶部有个图片可以下拉放大&#xff0c;图片底部是几个tab&#xff0c;可…...

MySQL检索数据和排序数据

目录 一、select语句 1.检索单个列&#xff08;SELECT 列名 FROM 表名;&#xff09; 2.检索多个列&#xff08;SELECT 列名1&#xff0c;列名2&#xff0c;列名3 FROM 表名;&#xff09; 3.检索所有的列&#xff08;SELECT * FROM 表名;&#xff09; 4.检索不同的行&#x…...

通过STM32内部ADC将烟雾传感器发送的信号值显示在OLED上

一.CubeMX配置 首先我们在CubeMX配置ADC1, 设置一个定时器TIM2定时1s采样一次以及刷新一次OLED&#xff0c; 打开IIC用于驱动OLED显示屏。 二.程序 在Keil5中添加好oled的显示库&#xff0c;以及用来显示的函数、初始化函数、清屏函数等。在主程序中初始化oled,并将其清屏。…...

ZEPHYR 快速开发指南

简介 国内小伙伴在学习zephyr的时候&#xff0c;有以下几个痛点&#xff1a; 学习门槛过高github访问不畅&#xff0c;下载起来比较费劲。 这篇文章将我自己踩的坑介绍一下&#xff0c;顺便给大家优化一些地方&#xff0c;避免掉所有的坑。 首先用virtualbox 来安装一个ubu…...

【FPGA + 串口】功能完备的串口测试模块,三种模式:自发自收、交叉收发、内源

【FPGA 串口】功能完备的串口测试模块&#xff0c;三种模式&#xff1a;自发自收、交叉收发、内源 VIO 控制单元 wire [1:0] mode;vio_uart UART_VIO (.clk(ad9361_l_clk), // input wire clk.probe_out0(mode) // output wire [1 : 0] probe_out0 );将 mod…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...