线段树详解 原理解释 + 构建步骤 + 代码(带模板)
目录
介绍:
定义:
以具体一个题目为例:
树的表示方法:
实现步骤:
构建结点属性:
pushup函数:
build函数:
pushdown函数:
modify函数:
query函数:
如何记忆:
模板:
介绍:
线段树(Segment Tree)是一种常用的数据结构,用于解决涉及区间查询的问题。它主要用于在数组或列表等数据结构上支持以下两类查询操作:
- 区间查询:查询某个区间内的统计信息,例如求和、最大值、最小值等。
- 区间更新:修改数组中某个区间元素的值,并相应地更新线段树中的信息。
核心思想是将原始数据递归地划分成一系列不相交的区间,并在每个区间上维护一些预先计算好的信息,以支持高效的区间查询。
定义:
假设我们有一个包含 N 个元素的数组 A,线段树 T 是基于数组 A 的线段树。线段树 T 是一个满二叉树,它具有以下性质:
- 根节点表示整个数组的区间 [1, N]。
- 如果一个节点表示的区间是 [left, right],则它的左子节点表示的区间是 [left, mid],右子节点表示的区间是 [mid+1, right],其中 mid 是 left 和 right 的中间值。
- 叶子节点表示数组 A 中的单个元素,而内部节点表示对应区间上的预计算信息(如区间和、区间最大值等)。
- 线段树通常使用数组来模拟实现。
线段树算法一般包含以下五个函数:
1.build(); 初始构建一个线段树。
2.pushpu(); 向上传递信息。
3.pushdown(); 向下传递懒标记,并且更新子树。
4.modify(); 修改某一区间。
5.query(); 查询某一区间信息。
下面我们一个一个来介绍。
以具体一个题目为例:
下面解析以此题目为例子。
树的表示方法:
我们用 tr 数组来模拟这颗树。
假设根节点在 tr 数组中的的下标为为 i,那么其左右子树的下标为:
左:i * 2 (i << 1)
右:i * 2 + 1 (i << 1 | 1)
我们一般使用位运算,也就是括号里的,含义是一样的。所以可以计算出,tr 数组的长度最多就是题目所给数组长度的4倍。
实现步骤:
事先把输入的数组存在 w数组 中。
构建结点属性:
树结点其实就是一个区间,所以属性包含:左右边界,懒标记。
此题的懒标记就是区间需要加上的值 d 。
根据题目我们还需要查询区间的元素和,所以在其中添加一个 sum。
struct Node
{int l, r;LL sum;LL add; // 懒标记
}tr[N * 4];;
pushup函数:
我们在 build 一颗树之前,要先写 pushup 函数,用于向上传递信息,因为我们只知道叶子结点的值,我们要用后序遍历去构建父亲,所以要用到 pushup ,根据题目,我们要向上传递的信息显然是左右子树的 sum 和,这样就可以算出父亲的 sum 。
void pushup(int u) // 向上传递信息
{tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
build函数:
接下来我们开始构建这颗树,若区间内只有一个元素(l == r),说明我们找到了叶子结点,给叶子结点赋值,若不是结子节点(l != r),就继续向左右子树递归,在递归完成时(后序遍历)使用pushup,通过已经获得值的子树去更新父亲。
void build(int u, int l, int r)
{if (l == r) tr[u] = {l, r, w[l], 0}; // 叶子节点else{tr[u] = {l, r};int mid = l + r >> 1;build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r); // 若不是叶子节点,向下递归pushup(u); // 通过子树构建父亲}
}
pushdown函数:
pushdown函数是给子树传递懒标记的,如果懒标记不为空,就将父亲的懒标记传递给左右子树,并且通过懒标记更新左右子树的信息,此题求的是sum,所以子树的 sum 值就要加上区间长度乘上父亲的懒标记,最后清空父亲的懒标记。
注意:懒标记表示的子树需要添加的信息,不包含父亲自己,所以在传递懒标记时,才要传递懒标记同时更新子树。
void pushdown(int u)
{auto &root = tr[u], &left = tr[u << 1], & right = tr[u << 1 | 1];if (root.add){// 传递懒标记并且更新子树left.add += root.add, left.sum += (LL)(left.r - left.l + 1) * root.add;right.add += root.add, right.sum += (LL)(right.r - right.l + 1) * root.add;root.add = 0; // 删除懒标记}
}
modify函数:
修改区间信息,如果当前遍历的结点区间已经在区间中,那么就直接给其加上懒标记,并且计算更新其 sum。如果当前遍历的结点区间中的一部分是需要修改的区间,那么就先向下传递懒标记pushdown,然后在向需要修改的左右子树去递归,后序返回时,要给更新父亲pushup。
void modify(int u, int l, int r, int v)
{// 结点在要修改的区间中if (l <= tr[u].l && r >= tr[u].r){tr[u].sum += (tr[u].r - tr[u].l + 1) * v;tr[u].add += v; // 加上懒标记}else{pushdown(u); // 先传递懒标记int mid = tr[u].l + tr[u].r >> 1;if (l <= mid) modify(u << 1, l, r, v);if (r > mid) modify(u << 1 | 1, l, r, v);pushup(u); // 更新父亲}
}
query函数:
用于查询区间信息,这里就是查询区间的sum。若遍历到的结点区间在查询区间之中,就返回其sum,若结点区间只有一部分在查询区间中,一样的,也是先传递懒标记,然后继续向需要计算的左右子树去递归,后序返回时计算结果。
LL query(int u, int l, int r)
{if (l <= tr[u].l && r >= tr[u].r) return tr[u].sum; // 返回区间信息pushdown(u); // 也是先传递懒标记LL v = 0;int mid = tr[u].l + tr[u].r >> 1;if (l <= mid) v = query(u << 1, l, r);if (r > mid) v += query(u << 1 | 1, l, r);return v;
}
如何记忆:
最重要的是注意每个函数pushup,pushdown函数的位置。只有在modify函数才两个一起用。
build函数只用一个pushup,query函数只用一个pushdown。
模板:
根据具体题目,自行修改。
// 操作是给区间每一个数加d
// 询问是求某一区间和
#include<iostream>using namespace std;typedef long long LL;
const int N = 100010;int w[N];
int n, m;struct Node
{int l, r;LL sum;LL add; // 懒标记
}tr[N * 4];;void pushup(int u) // 向上传递信息
{tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void pushdown(int u)
{auto &root = tr[u], &left = tr[u << 1], & right = tr[u << 1 | 1];if (root.add){// 传递懒标记并且更新子树left.add += root.add, left.sum += (LL)(left.r - left.l + 1) * root.add;right.add += root.add, right.sum += (LL)(right.r - right.l + 1) * root.add;root.add = 0; // 删除懒标记}
}
void build(int u, int l, int r)
{if (l == r) tr[u] = {l, r, w[l], 0}; // 叶子节点else{tr[u] = {l, r};int mid = l + r >> 1;build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r); // 若不是叶子节点,向下递归pushup(u); // 通过子树构建父亲}
}
void modify(int u, int l, int r, int v)
{// 结点在要修改的区间中if (l <= tr[u].l && r >= tr[u].r){tr[u].sum += (tr[u].r - tr[u].l + 1) * v;tr[u].add += v; // 加上懒标记}else{pushdown(u); // 先传递懒标记int mid = tr[u].l + tr[u].r >> 1;if (l <= mid) modify(u << 1, l, r, v);if (r > mid) modify(u << 1 | 1, l, r, v);pushup(u); // 更新父亲}
}LL query(int u, int l, int r)
{if (l <= tr[u].l && r >= tr[u].r) return tr[u].sum; // 返回区间信息pushdown(u); // 也是先传递懒标记LL v = 0;int mid = tr[u].l + tr[u].r >> 1;if (l <= mid) v = query(u << 1, l, r);if (r > mid) v += query(u << 1 | 1, l, r);return v;
}int main()
{scanf("%d%d", &n, &m);for (int i = 1; i <= n; ++i) scanf("%d", &w[i]); // 读入数组build(1, 1, n); // 以1为根节点,1~n区间建树char op[2];int l, r, t;// 读入修改和查询,q是查询,否则是修改while (m -- ){scanf("%s%d%d", op, &l, &r);if (*op == 'Q') printf("%lld\n", query(1, l, r));else{scanf("%d", &t);modify(1, l, r, t);}}return 0;
}相关文章:
线段树详解 原理解释 + 构建步骤 + 代码(带模板)
目录 介绍: 定义: 以具体一个题目为例: 树的表示方法: 实现步骤: 构建结点属性: pushup函数: build函数: pushdown函数: modify函数: query…...
Java中Timer的使用
Timer 简述 在Java中,Timer(计时器)是一个用于安排定时任务的类。它可以实现在指定的时间间隔或指定的时间点执行某项任务或操作。 简单的来说Timer就是在Java中用来实现定时任务的工具。 Timer的API Timer中有两API可以使用分别是schedule…...
关于EJB,这两文把热闹和门道都说清楚了
关于技术的很多概念,如果你是小白,不建议看官网。原因就在于官网描述太抽象,就像八股文,看完感觉好像说了很多,但回过头又感觉似乎啥都没说。太虚、不接地气,是最大毛病。其实这些官网的打太极式的表述&…...
MixFormerV2: Efficient Fully Transformer Tracking
摘要 基于变压器的跟踪器在标准基准测试上取得了很强的精度。然而,它们的效率仍然是在GPU和CPU平台上实际部署的一个障碍。在本文中,为了克服这一问题,我们提出了一个完全变压器跟踪框架,称为MixFormerV2,没有任何密集…...
K8S中网络如何通信
Kubernetes 提出了一个自己的网络模型“IP-per-pod”,能够很好地适应集群系统的网络需求,它有下面的这 4 点基本假设: 集群里的每个 Pod 都会有唯一的一个 IP 地址。Pod 里的所有容器共享这个 IP 地址。集群里的所有 Pod 都属于同一个网段。…...
LangChain Agents深入剖析及源码解密上(三)
AutoGPT案例V1版本 AutoGPT是一个实验性的开源应用程序,展示了GPT-4语言模型的功能,AutoGPT程序由GPT-4驱动,将大语言模型的思考链接在一起,以自主实现设定的任何目标。作为GPT-4完全自主运行的首批例子之一,AutoGPT突破了人工智能的可能性。LangChain框架复现了https://g…...
分布式限流方案及实现
优质博文:IT-BLOG-CN 一、限流的作用和意义 限流是对高并发访问进行限制,限速的过程。通过限流来限制资源,可以提高系统的稳定性和可靠性,控制系统的负载,削峰填谷,保证服务质量。 服务限流后的常见处理…...
vuejs源码阅读之优化器
前面讲过vuejs中解析器是把html模版解析成AST,而优化器的作用是在AST中找到静态子树并打上标记。 静态子树是指的那些在AST中永远不会发生变化的节点。 例如,一个纯文本节点就是静态子树,而带变量的文本节点就不是静态子树,因为…...
【C++】-动态内存管理
作者:小树苗渴望变成参天大树 作者宣言:认真写好每一篇博客 作者gitee:gitee 如 果 你 喜 欢 作 者 的 文 章 ,就 给 作 者 点 点 关 注 吧! 文章目录 前言一、C内存管理方式1.1 new/delete操作内置类型 总结 前言 今天再讲一个…...
微服务SpringCloud教程——微服务是什么
微服务(MicroServices)最初是由 Martin Fowler 于 2014 年发表的论文《MicroServices》中提出的名词,它一经提出就成为了技术圈的热门话题。 微服务,我们可以从字面上去理解,即“微小的服务”,下面我们从“…...
RNN架构解析——LSTM模型
目录 LSTMLSTM内部结构图 Bi-LSTM实现 优点和缺点 LSTM LSTM内部结构图 Bi-LSTM 实现 优点和缺点...
苹果电脑系统优化工具:Ventura Cache Cleaner for mac
Ventura Cache Cleaner for Mac是一款专门为苹果电脑开发的系统优化工具,旨在帮助用户清理和优化Mac电脑,提高系统性能和速度。该软件由美国公司Northern Softworks开发,已经推出了多个版本,适用于不同版本的Mac操作系统。 Ventu…...
为了爱人穿越沙漠-心理测试
我觉得很准的一个心理测试。我的答案反射出我的态度,它们是100%的贴切。有兴趣的朋友也不妨一试。 你有一个深爱着的心上人,然而你们却被一片无垠的沙漠相隔两地,你禁不住思念的折磨,决定穿越沙漠去寻找你心中的那个爱人…… 1、…...
SpringBoot月度员工绩效考核管理系统【附任务书|ppt|万字文档(LW)和搭建文档】
主要功能 员工登录: ①首页、个人中心:修改密码、个人信息管理等 ②公告信息管理、绩效指标管理、绩效考核管理 管理员登录: ①首页、个人中心:修改密码、个人信息管理等 ②公告信息管理、部门管理、岗位管理、员工管理、绩效指标…...
【新星计划】STM32F103C8T6 - C语言 - 蓝牙JDY-31-SPP串口通信实验
文章目录 蓝牙技术的发展历史SPP蓝牙串口BLE协议(超低功耗应用蓝牙协议) 常见通用蓝牙模块JDY-31-SPPHC05/06 Keil 工程开发模版main.c 源文件:接线方式:烧录工具:FlyMcu串口调试工具:XCOM蓝牙调试助手APP …...
算法39:Excel 表列序号
一、需求 给你一个字符串 columnTitle ,表示 Excel 表格中的列名称。返回 该列名称对应的列序号 。 例如: A -> 1 B -> 2 C -> 3 … Z -> 26 AA -> 27 AB -> 28 … 示例 1: 输入: columnTitle “A” 输出: 1 示例 2&…...
Android:ImageView xml方式配置selector 图片切换
1、在res/drawable目录下创建一个新的XML文件,比如selector_image.xml <?xml version"1.0" encoding"utf-8"?> <selector xmlns:android"http://schemas.android.com/apk/res/android"> <!-- 背景选择器 state_pre…...
Spring Boot 缓存 Cache 入门
Spring Boot 缓存 Cache 入门 1.概述 在系统访问量越来越大之后,往往最先出现瓶颈的往往是数据库。而为了减少数据库的压力,我们可以选择让产品砍掉消耗数据库性能的需求。 当然也可以引入缓存,在引入缓存之后,我们的读操作的代码ÿ…...
如何关闭谷歌浏览器自动更新
适用范围: 写自动化脚本时,需要安装浏览器驱动,安装浏览器驱动时需要下载对应的浏览器驱动版本,如果浏览器版本一直在自动更新的话,自动化脚本会报错浏览器版本和浏览器驱动不匹配,所以建议关闭谷歌浏览器自动更新&am…...
mybatis日志工厂
前言: 如果一个数据库操作,出现异常,我们需要排错,日志就是最好的助手 官方给我们提供了logImpl:指定 MyBatis 所用日志的具体实现,未指定时将自动查找。 默认工厂: 在配置文件里添加…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
